独立太阳能光伏水泵系统中云过境的影响

J.S. Artal-Sevil, T. Vazquez-Pulido, S. Bea-Alvarez, S. Dufo-López
{"title":"独立太阳能光伏水泵系统中云过境的影响","authors":"J.S. Artal-Sevil, T. Vazquez-Pulido, S. Bea-Alvarez, S. Dufo-López","doi":"10.24084/repqj21.449","DOIUrl":null,"url":null,"abstract":"This paper discusses the effects of cloud transit on a stand-alone direct solar photovoltaic water pumping system for irrigation and farms. In this way, its impact is studied, applying a possible classification based on its incidence and effects on the system. For this, the information provided by the data loggers of different photovoltaic installations has been analyzed and in turn compared with the data obtained in the reference installation. In addition, the Matlab-Simulink simulation model used is described. Different simulations have been developed to verify the basic characteristics of the proposed system. In this way, it is possible to check the advantages and drawbacks of the direct water pumping in irrigation applications. At the same time, the system parameters can be easily modified to meet the requirements of different water flow capacities. Also, the water hammer effect and the cavitation phenomenon in the water pump are described. Finally, the simulation results obtained as well as their conclusions are presented.","PeriodicalId":21007,"journal":{"name":"Renewable energy & power quality journal","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of cloud transits in a stand-alone solar photovoltaic water pumping system\",\"authors\":\"J.S. Artal-Sevil, T. Vazquez-Pulido, S. Bea-Alvarez, S. Dufo-López\",\"doi\":\"10.24084/repqj21.449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the effects of cloud transit on a stand-alone direct solar photovoltaic water pumping system for irrigation and farms. In this way, its impact is studied, applying a possible classification based on its incidence and effects on the system. For this, the information provided by the data loggers of different photovoltaic installations has been analyzed and in turn compared with the data obtained in the reference installation. In addition, the Matlab-Simulink simulation model used is described. Different simulations have been developed to verify the basic characteristics of the proposed system. In this way, it is possible to check the advantages and drawbacks of the direct water pumping in irrigation applications. At the same time, the system parameters can be easily modified to meet the requirements of different water flow capacities. Also, the water hammer effect and the cavitation phenomenon in the water pump are described. Finally, the simulation results obtained as well as their conclusions are presented.\",\"PeriodicalId\":21007,\"journal\":{\"name\":\"Renewable energy & power quality journal\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable energy & power quality journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24084/repqj21.449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable energy & power quality journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24084/repqj21.449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了云过境对灌溉和农场的独立直接太阳能光伏抽水系统的影响。通过这种方式,研究其影响,根据其发生率和对系统的影响应用可能的分类。为此,对不同光伏装置的数据记录仪提供的信息进行了分析,并与参考装置的数据进行了对比。此外,还介绍了所采用的Matlab-Simulink仿真模型。已经开发了不同的仿真来验证所提出系统的基本特性。通过这种方式,可以检查直接抽水在灌溉应用中的优点和缺点。同时,可以方便地修改系统参数,以满足不同水流能力的要求。并对水泵内的水锤效应和空化现象进行了描述。最后给出了仿真结果和结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of cloud transits in a stand-alone solar photovoltaic water pumping system
This paper discusses the effects of cloud transit on a stand-alone direct solar photovoltaic water pumping system for irrigation and farms. In this way, its impact is studied, applying a possible classification based on its incidence and effects on the system. For this, the information provided by the data loggers of different photovoltaic installations has been analyzed and in turn compared with the data obtained in the reference installation. In addition, the Matlab-Simulink simulation model used is described. Different simulations have been developed to verify the basic characteristics of the proposed system. In this way, it is possible to check the advantages and drawbacks of the direct water pumping in irrigation applications. At the same time, the system parameters can be easily modified to meet the requirements of different water flow capacities. Also, the water hammer effect and the cavitation phenomenon in the water pump are described. Finally, the simulation results obtained as well as their conclusions are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A bibliometric study on the nexus of economic growth and renewable energy in Brazil Energy Flows Optimization in a Renewable Energy Community with Storage Systems Integration Effect of cloud transits in a stand-alone solar photovoltaic water pumping system MATLAB® Modeling of a Microgrid: Towards a Vision Based on Entropy Balance Self-Heating Induced Instability of a Non-Linear Inductor in a SMPS: a Case Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1