WEARDA:记录用于人类活动监测的可穿戴传感器数据

Q1 Social Sciences Journal of Open Research Software Pub Date : 2023-01-01 DOI:10.5334/jors.454
Richard M. K. van Dijk, Daniela Gawehns, Matthijs van Leeuwen
{"title":"WEARDA:记录用于人类活动监测的可穿戴传感器数据","authors":"Richard M. K. van Dijk, Daniela Gawehns, Matthijs van Leeuwen","doi":"10.5334/jors.454","DOIUrl":null,"url":null,"abstract":"We present WEARDA,1 the open source WEARable sensor Data Acquisition software package. WEARDA facilitates the acquisition of human activity data with smartwatches and is primarily aimed at researchers who require transparency, full control, and access to raw sensor data. It provides functionality to simultaneously record raw data from four sensors—tri-axis accelerometer, tri-axis gyroscope, barometer, and GPS—which should enable researchers to, for example, estimate energy expenditure and mine movement trajectories. A Samsung smartwatch running the Tizen OS was chosen because of 1) the required functionalities of the smartwatch software API, 2) the availability of software development tools and accessible documentation, 3) having the required sensors, and 4) the requirements on case design for acceptance by the target user group. WEARDA addresses five practical challenges concerning preparation, measurement, logistics, privacy preservation, and reproducibility to ensure efficient and errorless data collection. The software package was initially created for the project “Dementia back at the heart of the community”,2 and has been successfully used in that context.","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WEARDA: Recording Wearable Sensor Data for Human Activity Monitoring\",\"authors\":\"Richard M. K. van Dijk, Daniela Gawehns, Matthijs van Leeuwen\",\"doi\":\"10.5334/jors.454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present WEARDA,1 the open source WEARable sensor Data Acquisition software package. WEARDA facilitates the acquisition of human activity data with smartwatches and is primarily aimed at researchers who require transparency, full control, and access to raw sensor data. It provides functionality to simultaneously record raw data from four sensors—tri-axis accelerometer, tri-axis gyroscope, barometer, and GPS—which should enable researchers to, for example, estimate energy expenditure and mine movement trajectories. A Samsung smartwatch running the Tizen OS was chosen because of 1) the required functionalities of the smartwatch software API, 2) the availability of software development tools and accessible documentation, 3) having the required sensors, and 4) the requirements on case design for acceptance by the target user group. WEARDA addresses five practical challenges concerning preparation, measurement, logistics, privacy preservation, and reproducibility to ensure efficient and errorless data collection. The software package was initially created for the project “Dementia back at the heart of the community”,2 and has been successfully used in that context.\",\"PeriodicalId\":37323,\"journal\":{\"name\":\"Journal of Open Research Software\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Open Research Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/jors.454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jors.454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

我们提出WEARDA,1开源可穿戴传感器数据采集软件包。WEARDA有助于通过智能手表获取人类活动数据,主要针对需要透明度、完全控制和访问原始传感器数据的研究人员。它提供了同时记录来自四个传感器(三轴加速度计、三轴陀螺仪、气压计和gps)的原始数据的功能,这应该使研究人员能够,例如,估计能量消耗和地雷运动轨迹。选择运行Tizen操作系统的三星智能手表是因为1)智能手表软件API所需的功能,2)软件开发工具的可用性和可访问的文档,3)具有所需的传感器,以及4)对外壳设计的要求,以供目标用户群体接受。WEARDA解决了有关准备、测量、物流、隐私保护和再现性的五个实际挑战,以确保有效和准确的数据收集。该软件包最初是为社区中心的“痴呆症”项目创建的2,并已成功地在该环境中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WEARDA: Recording Wearable Sensor Data for Human Activity Monitoring
We present WEARDA,1 the open source WEARable sensor Data Acquisition software package. WEARDA facilitates the acquisition of human activity data with smartwatches and is primarily aimed at researchers who require transparency, full control, and access to raw sensor data. It provides functionality to simultaneously record raw data from four sensors—tri-axis accelerometer, tri-axis gyroscope, barometer, and GPS—which should enable researchers to, for example, estimate energy expenditure and mine movement trajectories. A Samsung smartwatch running the Tizen OS was chosen because of 1) the required functionalities of the smartwatch software API, 2) the availability of software development tools and accessible documentation, 3) having the required sensors, and 4) the requirements on case design for acceptance by the target user group. WEARDA addresses five practical challenges concerning preparation, measurement, logistics, privacy preservation, and reproducibility to ensure efficient and errorless data collection. The software package was initially created for the project “Dementia back at the heart of the community”,2 and has been successfully used in that context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Open Research Software
Journal of Open Research Software Social Sciences-Library and Information Sciences
CiteScore
6.50
自引率
0.00%
发文量
7
审稿时长
21 weeks
期刊最新文献
Taskfarm: A Client/Server Framework for Supporting Massive Embarrassingly Parallel Workloads GTdownloader: A Python Package to Download, Visualize, and Export Georeferenced Tweets From the Twitter API A NetHack Learning Environment Language Wrapper for Autonomous Agents Automated Discovery of Container Executables Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1