{"title":"超声空化等离子体放电与激光烧蚀法制备氧化铝纳米颗粒的比较研究","authors":"Nikolay Bulychev","doi":"10.1615/nanoscitechnolintj.2023049107","DOIUrl":null,"url":null,"abstract":"In this work, aluminum oxide nanoparticles were fabricated by two physical methods: laser ablation in liquid medium and plasma discharge under the action of intensive ultrasonic cavitation. The nanoparticles obtained by both methods were comparatively examined by the dynamic light scattering, scanning electron microscopy, electrokinetic potential measurements. It was found that the synthesized particles had spherical shape with size about 50-70 nm, relatively narrow particle size distribution and were stable to aggregation and sedimentation. The surface properties of nanoparticles were examined by the measurement of the electrokinetic potential values of pure particles as well as in the presence water-soluble polymer polyethylene glycol. This study allowed to demonstrate the effect of ultrasonic action on the particles surface activity.","PeriodicalId":51672,"journal":{"name":"Nanoscience and Technology-An International Journal","volume":"27 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Aluminum Oxide Nanoparticles Synthesized in Plasma Discharge under Ultrasonic Cavitation and by Laser Ablation\",\"authors\":\"Nikolay Bulychev\",\"doi\":\"10.1615/nanoscitechnolintj.2023049107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, aluminum oxide nanoparticles were fabricated by two physical methods: laser ablation in liquid medium and plasma discharge under the action of intensive ultrasonic cavitation. The nanoparticles obtained by both methods were comparatively examined by the dynamic light scattering, scanning electron microscopy, electrokinetic potential measurements. It was found that the synthesized particles had spherical shape with size about 50-70 nm, relatively narrow particle size distribution and were stable to aggregation and sedimentation. The surface properties of nanoparticles were examined by the measurement of the electrokinetic potential values of pure particles as well as in the presence water-soluble polymer polyethylene glycol. This study allowed to demonstrate the effect of ultrasonic action on the particles surface activity.\",\"PeriodicalId\":51672,\"journal\":{\"name\":\"Nanoscience and Technology-An International Journal\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Technology-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/nanoscitechnolintj.2023049107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Technology-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/nanoscitechnolintj.2023049107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
A Comparative Study of Aluminum Oxide Nanoparticles Synthesized in Plasma Discharge under Ultrasonic Cavitation and by Laser Ablation
In this work, aluminum oxide nanoparticles were fabricated by two physical methods: laser ablation in liquid medium and plasma discharge under the action of intensive ultrasonic cavitation. The nanoparticles obtained by both methods were comparatively examined by the dynamic light scattering, scanning electron microscopy, electrokinetic potential measurements. It was found that the synthesized particles had spherical shape with size about 50-70 nm, relatively narrow particle size distribution and were stable to aggregation and sedimentation. The surface properties of nanoparticles were examined by the measurement of the electrokinetic potential values of pure particles as well as in the presence water-soluble polymer polyethylene glycol. This study allowed to demonstrate the effect of ultrasonic action on the particles surface activity.