恐惧和延迟对具有Crowley-Martin功能反应和捕食者阶段结构的捕食者-猎物模型的影响

IF 1.8 3区 数学 Q1 MATHEMATICS AIMS Mathematics Pub Date : 2023-01-01 DOI:10.3934/math.20231498
Weili Kong, Yuanfu Shao
{"title":"恐惧和延迟对具有Crowley-Martin功能反应和捕食者阶段结构的捕食者-猎物模型的影响","authors":"Weili Kong, Yuanfu Shao","doi":"10.3934/math.20231498","DOIUrl":null,"url":null,"abstract":"<abstract><p>Taking into account the delayed fear induced by predators on the birth rate of prey, the counter-predation sensitiveness of prey, and the direct consumption by predators with stage structure and interference impacts, we proposed a prey-predator model with fear, Crowley-Martin functional response, stage structure and time delays. By use of the functional differential equation theory and Sotomayor's bifurcation theorem, we established some criteria of the local asymptotical stability and bifurcations of the system equilibrium points. Numerically, we validated the theoretical findings and explored the effects of fear, counter-predation sensitivity, direct predation rate and the transversion rate of the immature predator. We found that the functional response as well as the stage structure of predators affected the system stability. The fear and anti-predation sensitivity have positive and negative impacts to the system stability. Low fear level and high anti-predation sensitivity are beneficial to the system stability and the survival of prey. Meanwhile, low anti-predation sensitivity can make the system jump from one equilibrium point to another or make it oscillate between stability and instability frequently, leading to such phenomena as the bubble, or bistability. The fear and mature delays can make the system change from unstable to stable and cause chaos if they are too large. Finally, some ecological suggestions were given to overcome the negative effect induced by fear on the system stability.</p></abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"123 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of fear and delay on a predator-prey model with Crowley-Martin functional response and stage structure for predator\",\"authors\":\"Weili Kong, Yuanfu Shao\",\"doi\":\"10.3934/math.20231498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>Taking into account the delayed fear induced by predators on the birth rate of prey, the counter-predation sensitiveness of prey, and the direct consumption by predators with stage structure and interference impacts, we proposed a prey-predator model with fear, Crowley-Martin functional response, stage structure and time delays. By use of the functional differential equation theory and Sotomayor's bifurcation theorem, we established some criteria of the local asymptotical stability and bifurcations of the system equilibrium points. Numerically, we validated the theoretical findings and explored the effects of fear, counter-predation sensitivity, direct predation rate and the transversion rate of the immature predator. We found that the functional response as well as the stage structure of predators affected the system stability. The fear and anti-predation sensitivity have positive and negative impacts to the system stability. Low fear level and high anti-predation sensitivity are beneficial to the system stability and the survival of prey. Meanwhile, low anti-predation sensitivity can make the system jump from one equilibrium point to another or make it oscillate between stability and instability frequently, leading to such phenomena as the bubble, or bistability. The fear and mature delays can make the system change from unstable to stable and cause chaos if they are too large. Finally, some ecological suggestions were given to overcome the negative effect induced by fear on the system stability.</p></abstract>\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231498\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/math.20231498","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑捕食者对猎物出生率的延迟恐惧、猎物的反捕食敏感性以及捕食者的直接消耗与阶段结构和干扰的影响,提出了一个具有恐惧、Crowley-Martin功能反应、阶段结构和时间延迟的捕食者-捕食者模型。利用泛函微分方程理论和Sotomayor分岔定理,建立了系统平衡点局部渐近稳定和分岔的判据。在数值上验证了理论结果,并探讨了恐惧、反捕食敏感性、直接捕食率和未成熟捕食者翻转率的影响。研究发现,捕食者的功能反应和阶段结构影响着系统的稳定性。恐惧和反捕食敏感性对系统稳定性有正、负两方面的影响。低恐惧水平和高反捕食敏感性有利于系统的稳定和猎物的生存。同时,低的抗捕食灵敏度会使系统从一个平衡点跳到另一个平衡点,或在稳定与不稳定之间频繁振荡,导致气泡、双稳定等现象。恐惧和成熟的延迟会使系统从不稳定变为稳定,如果它们太大则会导致混乱。最后,提出了克服恐惧对系统稳定性负面影响的生态学建议。</ </abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of fear and delay on a predator-prey model with Crowley-Martin functional response and stage structure for predator

Taking into account the delayed fear induced by predators on the birth rate of prey, the counter-predation sensitiveness of prey, and the direct consumption by predators with stage structure and interference impacts, we proposed a prey-predator model with fear, Crowley-Martin functional response, stage structure and time delays. By use of the functional differential equation theory and Sotomayor's bifurcation theorem, we established some criteria of the local asymptotical stability and bifurcations of the system equilibrium points. Numerically, we validated the theoretical findings and explored the effects of fear, counter-predation sensitivity, direct predation rate and the transversion rate of the immature predator. We found that the functional response as well as the stage structure of predators affected the system stability. The fear and anti-predation sensitivity have positive and negative impacts to the system stability. Low fear level and high anti-predation sensitivity are beneficial to the system stability and the survival of prey. Meanwhile, low anti-predation sensitivity can make the system jump from one equilibrium point to another or make it oscillate between stability and instability frequently, leading to such phenomena as the bubble, or bistability. The fear and mature delays can make the system change from unstable to stable and cause chaos if they are too large. Finally, some ecological suggestions were given to overcome the negative effect induced by fear on the system stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
期刊最新文献
Efficient numerical approaches with accelerated graphics processing unit (GPU) computations for Poisson problems and Cahn-Hilliard equations. Fejér type inequalities for harmonically convex functions Angle in the space of $ p $-summable sequences Cohomologies of modified $ \lambda $-differential Lie triple systems and applications The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1