阿曼Jazirat Al Halaniyat混合可再生能源系统的技术经济设计与分析

{"title":"阿曼Jazirat Al Halaniyat混合可再生能源系统的技术经济设计与分析","authors":"","doi":"10.20508/ijrer.v13i3.13679.g8778","DOIUrl":null,"url":null,"abstract":"This research aims to design a hybrid solar-wind-diesel- storage battery sustainable energy system for Jazirat Al Halaniyat (Island) in the Sultanate of Oman. Techno economic assessment and analysis were done by using the HomerPro software. Many factors were considered such as the weather conditions, availability of different renewable energy resources, life security, and economic factors. The weather conditions were found having limited impacts on the overall performance of the proposed system because of the successful technical integration of the wind and solar weather conditions during the summer period. Using the real load data for 2019 and 2020, at a peak load of 500 kW and an annual load demand of 2350 MWh, different hybrid generation solar, wind, diesel generator and storage battery configurations were examined for the best optimum sizing, minimum cost, and most stable system for 25 years period. The techno economic analysis results proved that the proposed system could run with a 1004 kW PV solar system, 160 kW wind turbine with a contribution of 580 diesel electricity generator and storage of 1478 kWh yearly. The proposed system is expected to produce an annual electricity production of 3,548 MWh/year, of which around 56.6% (2,007 MWh/year) will produced by the solar PV panels at LCOE of $0.234 per kWh.","PeriodicalId":14385,"journal":{"name":"International Journal of Renewable Energy Research","volume":"30 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Techno economic design and analysis of a hybrid renewable Energy system for Jazirat Al Halaniyat in Oman\",\"authors\":\"\",\"doi\":\"10.20508/ijrer.v13i3.13679.g8778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to design a hybrid solar-wind-diesel- storage battery sustainable energy system for Jazirat Al Halaniyat (Island) in the Sultanate of Oman. Techno economic assessment and analysis were done by using the HomerPro software. Many factors were considered such as the weather conditions, availability of different renewable energy resources, life security, and economic factors. The weather conditions were found having limited impacts on the overall performance of the proposed system because of the successful technical integration of the wind and solar weather conditions during the summer period. Using the real load data for 2019 and 2020, at a peak load of 500 kW and an annual load demand of 2350 MWh, different hybrid generation solar, wind, diesel generator and storage battery configurations were examined for the best optimum sizing, minimum cost, and most stable system for 25 years period. The techno economic analysis results proved that the proposed system could run with a 1004 kW PV solar system, 160 kW wind turbine with a contribution of 580 diesel electricity generator and storage of 1478 kWh yearly. The proposed system is expected to produce an annual electricity production of 3,548 MWh/year, of which around 56.6% (2,007 MWh/year) will produced by the solar PV panels at LCOE of $0.234 per kWh.\",\"PeriodicalId\":14385,\"journal\":{\"name\":\"International Journal of Renewable Energy Research\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Renewable Energy Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20508/ijrer.v13i3.13679.g8778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20508/ijrer.v13i3.13679.g8778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究旨在为阿曼苏丹国的Jazirat Al Halaniyat(岛)设计一个混合太阳能-风能-柴油-储能电池可持续能源系统。采用HomerPro软件进行技术经济评价和分析。考虑了许多因素,如天气条件、不同可再生能源的可用性、生命安全和经济因素。由于在夏季期间成功地将风和太阳天气条件进行了技术整合,因此发现天气条件对拟议系统的整体性能影响有限。利用2019年和2020年的实际负荷数据,在峰值负荷为500kw,年负荷需求为2350mwh的情况下,研究了不同的混合发电太阳能、风能、柴油发电机和蓄电池配置,以获得25年最优规模、最低成本和最稳定的系统。技术经济分析结果表明,该系统可与1004 kW的光伏太阳能系统、160 kW的风力发电机组和580台柴油发电机组配合运行,年储能1478千瓦时。拟议的系统预计年发电量为3,548兆瓦时/年,其中约56.6%(2007兆瓦时/年)将由太阳能光伏板以每千瓦时0.234美元的LCOE产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Techno economic design and analysis of a hybrid renewable Energy system for Jazirat Al Halaniyat in Oman
This research aims to design a hybrid solar-wind-diesel- storage battery sustainable energy system for Jazirat Al Halaniyat (Island) in the Sultanate of Oman. Techno economic assessment and analysis were done by using the HomerPro software. Many factors were considered such as the weather conditions, availability of different renewable energy resources, life security, and economic factors. The weather conditions were found having limited impacts on the overall performance of the proposed system because of the successful technical integration of the wind and solar weather conditions during the summer period. Using the real load data for 2019 and 2020, at a peak load of 500 kW and an annual load demand of 2350 MWh, different hybrid generation solar, wind, diesel generator and storage battery configurations were examined for the best optimum sizing, minimum cost, and most stable system for 25 years period. The techno economic analysis results proved that the proposed system could run with a 1004 kW PV solar system, 160 kW wind turbine with a contribution of 580 diesel electricity generator and storage of 1478 kWh yearly. The proposed system is expected to produce an annual electricity production of 3,548 MWh/year, of which around 56.6% (2,007 MWh/year) will produced by the solar PV panels at LCOE of $0.234 per kWh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Renewable Energy Research
International Journal of Renewable Energy Research Energy-Energy Engineering and Power Technology
CiteScore
2.80
自引率
10.00%
发文量
58
期刊介绍: The International Journal of Renewable Energy Research (IJRER) is not a for profit organisation. IJRER is a quarterly published, open source journal and operates an online submission with the peer review system allowing authors to submit articles online and track their progress via its web interface. IJRER seeks to promote and disseminate knowledge of the various topics and technologies of renewable (green) energy resources. The journal aims to present to the international community important results of work in the fields of renewable energy research, development, application or design. The journal also aims to help researchers, scientists, manufacturers, institutions, world agencies, societies, etc. to keep up with new developments in theory and applications and to provide alternative energy solutions to current issues such as the greenhouse effect, sustainable and clean energy issues.
期刊最新文献
A Robust Cascaded Controller for Load Frequency Control in Renewable Energy Integrated Microgrid Containing PEV Performance n-Pentane in Geothermal Medium Enthalpy Binary Cycle for Electric Power Small Scale Analysis of Hybrid PV Configurations to Mitigate Partial Shading Losses Path Finder Optimization Algorithm Tuned 3DOFPID Controller for Frequency Stabilization in Wind Integrated Realistic Power System with HVDC line Deep Belief Learning Network Based IC- DSTATCOM For PQ Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1