马里奥:一个多功能和用户友好的软件,用于建立输入输出模型

Q1 Social Sciences Journal of Open Research Software Pub Date : 2023-01-01 DOI:10.5334/jors.473
Mohammad Amin Tahavori, Nicolò Golinucci, Lorenzo Rinaldi, Matteo Vincenzo Rocco, Emanuela Colombo
{"title":"马里奥:一个多功能和用户友好的软件,用于建立输入输出模型","authors":"Mohammad Amin Tahavori, Nicolò Golinucci, Lorenzo Rinaldi, Matteo Vincenzo Rocco, Emanuela Colombo","doi":"10.5334/jors.473","DOIUrl":null,"url":null,"abstract":"MARIO (Multi-Regional Analysis of Regions through Input-Output) is a Python-based framework for building input-output models. It automates the parsing of well-known databases (e.g. EXIOBASE, EORA, Eurostat) and of customized tables. With respect to similar tools, like pymrio, it broadens the scope of application to supply-use tables and handles both monetary and physical units. Employing an intuitive Excel-based API, it facilitates advanced table manipulations and allows for modelling additional supply chains through a hybrid LCA approach. It provides built-in functions for footprinting and scenario analyses as well as for visualizations of model outcomes. Results are exportable into various formats, possibly supplemented by a metadata file tracking the full history of applied changes. MARIO comes with extensive documentation and is available on Zenodo, GitHub, or installable via PyPI.","PeriodicalId":37323,"journal":{"name":"Journal of Open Research Software","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MARIO: A Versatile and User-Friendly Software for Building Input-Output Models\",\"authors\":\"Mohammad Amin Tahavori, Nicolò Golinucci, Lorenzo Rinaldi, Matteo Vincenzo Rocco, Emanuela Colombo\",\"doi\":\"10.5334/jors.473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MARIO (Multi-Regional Analysis of Regions through Input-Output) is a Python-based framework for building input-output models. It automates the parsing of well-known databases (e.g. EXIOBASE, EORA, Eurostat) and of customized tables. With respect to similar tools, like pymrio, it broadens the scope of application to supply-use tables and handles both monetary and physical units. Employing an intuitive Excel-based API, it facilitates advanced table manipulations and allows for modelling additional supply chains through a hybrid LCA approach. It provides built-in functions for footprinting and scenario analyses as well as for visualizations of model outcomes. Results are exportable into various formats, possibly supplemented by a metadata file tracking the full history of applied changes. MARIO comes with extensive documentation and is available on Zenodo, GitHub, or installable via PyPI.\",\"PeriodicalId\":37323,\"journal\":{\"name\":\"Journal of Open Research Software\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Open Research Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/jors.473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Research Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jors.473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

MARIO (Multi-Regional Analysis of Regions through Input-Output)是一个基于python的框架,用于构建投入-产出模型。它可以自动解析知名数据库(例如EXIOBASE, EORA, Eurostat)和定制表。相对于类似的工具,如pymrio,它将应用范围扩大到供应-使用表,并处理货币和物理单位。它采用直观的基于excel的API,便于高级表操作,并允许通过混合LCA方法建模额外的供应链。它为足迹和场景分析以及模型结果的可视化提供了内置功能。结果可以导出为各种格式,还可以通过跟踪应用更改的完整历史记录的元数据文件进行补充。马里奥带有广泛的文档,可在Zenodo, GitHub上使用,或通过PyPI安装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MARIO: A Versatile and User-Friendly Software for Building Input-Output Models
MARIO (Multi-Regional Analysis of Regions through Input-Output) is a Python-based framework for building input-output models. It automates the parsing of well-known databases (e.g. EXIOBASE, EORA, Eurostat) and of customized tables. With respect to similar tools, like pymrio, it broadens the scope of application to supply-use tables and handles both monetary and physical units. Employing an intuitive Excel-based API, it facilitates advanced table manipulations and allows for modelling additional supply chains through a hybrid LCA approach. It provides built-in functions for footprinting and scenario analyses as well as for visualizations of model outcomes. Results are exportable into various formats, possibly supplemented by a metadata file tracking the full history of applied changes. MARIO comes with extensive documentation and is available on Zenodo, GitHub, or installable via PyPI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Open Research Software
Journal of Open Research Software Social Sciences-Library and Information Sciences
CiteScore
6.50
自引率
0.00%
发文量
7
审稿时长
21 weeks
期刊最新文献
Taskfarm: A Client/Server Framework for Supporting Massive Embarrassingly Parallel Workloads GTdownloader: A Python Package to Download, Visualize, and Export Georeferenced Tweets From the Twitter API A NetHack Learning Environment Language Wrapper for Autonomous Agents Automated Discovery of Container Executables Fan-Slicer: A Pycuda Package for Fast Reslicing of Ultrasound Shaped Planes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1