{"title":"功能数据反事实分析的新模型","authors":"Emilio Carrizosa, Jasone Ramírez-Ayerbe, Dolores Romero Morales","doi":"10.1007/s11634-023-00563-5","DOIUrl":null,"url":null,"abstract":"<div><p>Counterfactual explanations have become a very popular interpretability tool to understand and explain how complex machine learning models make decisions for individual instances. Most of the research on counterfactual explainability focuses on tabular and image data and much less on models dealing with functional data. In this paper, a counterfactual analysis for functional data is addressed, in which the goal is to identify the samples of the dataset from which the counterfactual explanation is made of, as well as how they are combined so that the individual instance and its counterfactual are as close as possible. Our methodology can be used with different distance measures for multivariate functional data and is applicable to any score-based classifier. We illustrate our methodology using two different real-world datasets, one univariate and another multivariate.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"18 4","pages":"981 - 1000"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11634-023-00563-5.pdf","citationCount":"0","resultStr":"{\"title\":\"A new model for counterfactual analysis for functional data\",\"authors\":\"Emilio Carrizosa, Jasone Ramírez-Ayerbe, Dolores Romero Morales\",\"doi\":\"10.1007/s11634-023-00563-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Counterfactual explanations have become a very popular interpretability tool to understand and explain how complex machine learning models make decisions for individual instances. Most of the research on counterfactual explainability focuses on tabular and image data and much less on models dealing with functional data. In this paper, a counterfactual analysis for functional data is addressed, in which the goal is to identify the samples of the dataset from which the counterfactual explanation is made of, as well as how they are combined so that the individual instance and its counterfactual are as close as possible. Our methodology can be used with different distance measures for multivariate functional data and is applicable to any score-based classifier. We illustrate our methodology using two different real-world datasets, one univariate and another multivariate.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"18 4\",\"pages\":\"981 - 1000\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11634-023-00563-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-023-00563-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-023-00563-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A new model for counterfactual analysis for functional data
Counterfactual explanations have become a very popular interpretability tool to understand and explain how complex machine learning models make decisions for individual instances. Most of the research on counterfactual explainability focuses on tabular and image data and much less on models dealing with functional data. In this paper, a counterfactual analysis for functional data is addressed, in which the goal is to identify the samples of the dataset from which the counterfactual explanation is made of, as well as how they are combined so that the individual instance and its counterfactual are as close as possible. Our methodology can be used with different distance measures for multivariate functional data and is applicable to any score-based classifier. We illustrate our methodology using two different real-world datasets, one univariate and another multivariate.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.