水泥型保温材料力学性能的变化

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Building Physics Pub Date : 2023-10-25 DOI:10.1177/17442591231203245
Ibrahima Diaw, Mactar Faye, Stéphane Hans, Frédéric Sallet, Vincent Sambou
{"title":"水泥型保温材料力学性能的变化","authors":"Ibrahima Diaw, Mactar Faye, Stéphane Hans, Frédéric Sallet, Vincent Sambou","doi":"10.1177/17442591231203245","DOIUrl":null,"url":null,"abstract":"The reduction of energy consumption in the building sector is an important consideration for the protection of environment and availability of fossil resources. Therefore, plant-based concretes are increasingly developed to insulate buildings and reduce the contribution of the construction sector to energy consumption. In this study, concrete made of typha with a cementitious matrix was elaborated. The mechanical performances (compressive strength and apparent elastic module) are evaluated. The variability of these performances according to the water/binder ratio, the curing conditions, and the class of cement were studied. The results show that mechanical performances of Typha cement concretes are in accordance with the values recommended in the French professional rules for hemp construction. The apparent elastic module obtained range from 15 to 35 MPa. The stress at 10% strain decreases from 0.52 to 0.30 MPa with increasing water content. The water/binder ratio of 0.7 conducted to the best mechanical performance.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"32 6","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variability of mechanical performance of cement-typha insulation materials\",\"authors\":\"Ibrahima Diaw, Mactar Faye, Stéphane Hans, Frédéric Sallet, Vincent Sambou\",\"doi\":\"10.1177/17442591231203245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reduction of energy consumption in the building sector is an important consideration for the protection of environment and availability of fossil resources. Therefore, plant-based concretes are increasingly developed to insulate buildings and reduce the contribution of the construction sector to energy consumption. In this study, concrete made of typha with a cementitious matrix was elaborated. The mechanical performances (compressive strength and apparent elastic module) are evaluated. The variability of these performances according to the water/binder ratio, the curing conditions, and the class of cement were studied. The results show that mechanical performances of Typha cement concretes are in accordance with the values recommended in the French professional rules for hemp construction. The apparent elastic module obtained range from 15 to 35 MPa. The stress at 10% strain decreases from 0.52 to 0.30 MPa with increasing water content. The water/binder ratio of 0.7 conducted to the best mechanical performance.\",\"PeriodicalId\":50249,\"journal\":{\"name\":\"Journal of Building Physics\",\"volume\":\"32 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Building Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/17442591231203245\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17442591231203245","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

降低建筑行业的能耗是保护环境和利用化石资源的重要考虑因素。因此,植物基混凝土越来越多地用于隔离建筑物并减少建筑部门对能源消耗的贡献。在这项研究中,详细阐述了用水泥基质制成的混凝土。对其力学性能(抗压强度和表观弹性模量)进行了评价。研究了水胶比、养护条件和水泥种类对这些性能的影响。结果表明,泰法水泥混凝土的力学性能符合法国麻类施工专业规程的推荐值。得到的表观弹性模量为15 ~ 35mpa。随着含水量的增加,10%应变下的应力从0.52 MPa降低到0.30 MPa。水胶比为0.7时,其力学性能最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variability of mechanical performance of cement-typha insulation materials
The reduction of energy consumption in the building sector is an important consideration for the protection of environment and availability of fossil resources. Therefore, plant-based concretes are increasingly developed to insulate buildings and reduce the contribution of the construction sector to energy consumption. In this study, concrete made of typha with a cementitious matrix was elaborated. The mechanical performances (compressive strength and apparent elastic module) are evaluated. The variability of these performances according to the water/binder ratio, the curing conditions, and the class of cement were studied. The results show that mechanical performances of Typha cement concretes are in accordance with the values recommended in the French professional rules for hemp construction. The apparent elastic module obtained range from 15 to 35 MPa. The stress at 10% strain decreases from 0.52 to 0.30 MPa with increasing water content. The water/binder ratio of 0.7 conducted to the best mechanical performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Building Physics
Journal of Building Physics 工程技术-结构与建筑技术
CiteScore
5.10
自引率
15.00%
发文量
10
审稿时长
5.3 months
期刊介绍: Journal of Building Physics (J. Bldg. Phys) is an international, peer-reviewed journal that publishes a high quality research and state of the art “integrated” papers to promote scientifically thorough advancement of all the areas of non-structural performance of a building and particularly in heat, air, moisture transfer.
期刊最新文献
Predictive heating load management and energy flexibility analysis in residential sector using an archetype gray-box modeling approach: Application to an experimental house in Québec. A review of complex window-glazing systems for building energy saving and daylight comfort: Glazing technologies and their building performance prediction Wind environment and pollutant dispersion around high-rise buildings with different void space structures Definition, estimation and decoupling of the overall uncertainty of the outdoor air temperature measurement surrounding a building envelope Hygrothermal risk assessment tool for brick walls in a changing climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1