{"title":"NiFeCoAlOOH纳米粒子修饰掺杂钛纳米多孔赤铁矿光阳极用于高效光电化学水分解","authors":"Antony Minja, Taotao Wang, Hongyun Cao, Pingwu Du","doi":"10.1063/1674-0068/cjcp2104071","DOIUrl":null,"url":null,"abstract":"Herein, we present the decoration of NiFeCoAlOOH nanoparticles onto titanium doped nanoporous hematite (Ti-PH) utilizing a simple electroless ligand-controlled oxidation method for photoelectrochemical water splitting. Owing to the improved oxygen evolution reaction kinetics and reduced charge transfer resistance, the resulting Ti-PH/NiFeCoAlOOH photoanode presents an excellent photocurrent density of 2.46 mA/cm2 at 1.23 V vs. RHE and good stability compared to Ti-PH or bare hematite. Furthermore, the onset potential of the photocurrent density is shifted cathodically by ∼60 mV with reference to the titanium doped nanoporous hematite. This work offers a promising method for designing high-performance, stable, and inexpensive catalysts for photoelectrochemical applications.","PeriodicalId":10036,"journal":{"name":"Chinese Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Titanium doped nanoporous hematite photoanode modified with NiFeCoAlOOH nanoparticles for efficient photoelectrochemical water splitting\",\"authors\":\"Antony Minja, Taotao Wang, Hongyun Cao, Pingwu Du\",\"doi\":\"10.1063/1674-0068/cjcp2104071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we present the decoration of NiFeCoAlOOH nanoparticles onto titanium doped nanoporous hematite (Ti-PH) utilizing a simple electroless ligand-controlled oxidation method for photoelectrochemical water splitting. Owing to the improved oxygen evolution reaction kinetics and reduced charge transfer resistance, the resulting Ti-PH/NiFeCoAlOOH photoanode presents an excellent photocurrent density of 2.46 mA/cm2 at 1.23 V vs. RHE and good stability compared to Ti-PH or bare hematite. Furthermore, the onset potential of the photocurrent density is shifted cathodically by ∼60 mV with reference to the titanium doped nanoporous hematite. This work offers a promising method for designing high-performance, stable, and inexpensive catalysts for photoelectrochemical applications.\",\"PeriodicalId\":10036,\"journal\":{\"name\":\"Chinese Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1674-0068/cjcp2104071\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1674-0068/cjcp2104071","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Titanium doped nanoporous hematite photoanode modified with NiFeCoAlOOH nanoparticles for efficient photoelectrochemical water splitting
Herein, we present the decoration of NiFeCoAlOOH nanoparticles onto titanium doped nanoporous hematite (Ti-PH) utilizing a simple electroless ligand-controlled oxidation method for photoelectrochemical water splitting. Owing to the improved oxygen evolution reaction kinetics and reduced charge transfer resistance, the resulting Ti-PH/NiFeCoAlOOH photoanode presents an excellent photocurrent density of 2.46 mA/cm2 at 1.23 V vs. RHE and good stability compared to Ti-PH or bare hematite. Furthermore, the onset potential of the photocurrent density is shifted cathodically by ∼60 mV with reference to the titanium doped nanoporous hematite. This work offers a promising method for designing high-performance, stable, and inexpensive catalysts for photoelectrochemical applications.
期刊介绍:
Chinese Journal of Chemical Physics (CJCP) aims to bridge atomic and molecular level research in broad scope for disciplines in chemistry, physics, material science and life sciences, including the following:
Theoretical Methods, Algorithms, Statistical and Quantum Chemistry
Gas Phase Dynamics and Structure: Spectroscopy, Molecular Interactions, Scattering, Photochemistry
Condensed Phase Dynamics, Structure, and Thermodynamics: Spectroscopy, Reactions, and Relaxation Processes
Surfaces, Interfaces, Single Molecules, Materials and Nanosciences
Polymers, Biopolymers, and Complex Systems
Other related topics