生命周期策略重用和任务容量的重要性

IF 1.4 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE AI Communications Pub Date : 2023-10-24 DOI:10.3233/aic-230040
David M. Bossens, Adam J. Sobey
{"title":"生命周期策略重用和任务容量的重要性","authors":"David M. Bossens, Adam J. Sobey","doi":"10.3233/aic-230040","DOIUrl":null,"url":null,"abstract":"A long-standing challenge in artificial intelligence is lifelong reinforcement learning, where learners are given many tasks in sequence and must transfer knowledge between tasks while avoiding catastrophic forgetting. Policy reuse and other multi-policy reinforcement learning techniques can learn multiple tasks but may generate many policies. This paper presents two novel contributions, namely 1) Lifetime Policy Reuse, a model-agnostic policy reuse algorithm that avoids generating many policies by optimising a fixed number of near-optimal policies through a combination of policy optimisation and adaptive policy selection; and 2) the task capacity, a measure for the maximal number of tasks that a policy can accurately solve. Comparing two state-of-the-art base-learners, the results demonstrate the importance of Lifetime Policy Reuse and task capacity based pre-selection on an 18-task partially observable Pacman domain and a Cartpole domain of up to 125 tasks.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"72 5-6","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifetime policy reuse and the importance of task capacity\",\"authors\":\"David M. Bossens, Adam J. Sobey\",\"doi\":\"10.3233/aic-230040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A long-standing challenge in artificial intelligence is lifelong reinforcement learning, where learners are given many tasks in sequence and must transfer knowledge between tasks while avoiding catastrophic forgetting. Policy reuse and other multi-policy reinforcement learning techniques can learn multiple tasks but may generate many policies. This paper presents two novel contributions, namely 1) Lifetime Policy Reuse, a model-agnostic policy reuse algorithm that avoids generating many policies by optimising a fixed number of near-optimal policies through a combination of policy optimisation and adaptive policy selection; and 2) the task capacity, a measure for the maximal number of tasks that a policy can accurately solve. Comparing two state-of-the-art base-learners, the results demonstrate the importance of Lifetime Policy Reuse and task capacity based pre-selection on an 18-task partially observable Pacman domain and a Cartpole domain of up to 125 tasks.\",\"PeriodicalId\":50835,\"journal\":{\"name\":\"AI Communications\",\"volume\":\"72 5-6\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/aic-230040\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/aic-230040","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

人工智能领域的一个长期挑战是终身强化学习,学习者被按顺序分配许多任务,必须在任务之间转移知识,同时避免灾难性的遗忘。策略重用和其他多策略强化学习技术可以学习多个任务,但可能产生许多策略。本文提出了两个新颖的贡献,即1)终身策略重用,一种模型无关的策略重用算法,通过策略优化和自适应策略选择的结合,通过优化固定数量的近最优策略来避免生成许多策略;2)任务容量,一个策略可以准确解决的最大任务数量的度量。比较两种最先进的基础学习器,结果表明在18个任务部分可观察的Pacman域和多达125个任务的Cartpole域上,终身策略重用和基于任务容量的预选的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lifetime policy reuse and the importance of task capacity
A long-standing challenge in artificial intelligence is lifelong reinforcement learning, where learners are given many tasks in sequence and must transfer knowledge between tasks while avoiding catastrophic forgetting. Policy reuse and other multi-policy reinforcement learning techniques can learn multiple tasks but may generate many policies. This paper presents two novel contributions, namely 1) Lifetime Policy Reuse, a model-agnostic policy reuse algorithm that avoids generating many policies by optimising a fixed number of near-optimal policies through a combination of policy optimisation and adaptive policy selection; and 2) the task capacity, a measure for the maximal number of tasks that a policy can accurately solve. Comparing two state-of-the-art base-learners, the results demonstrate the importance of Lifetime Policy Reuse and task capacity based pre-selection on an 18-task partially observable Pacman domain and a Cartpole domain of up to 125 tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AI Communications
AI Communications 工程技术-计算机:人工智能
CiteScore
2.30
自引率
12.50%
发文量
34
审稿时长
4.5 months
期刊介绍: AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies. AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.
期刊最新文献
Multi-feature fusion dehazing based on CycleGAN Spatio-temporal deep learning framework for pedestrian intention prediction in urban traffic scenes Open-world object detection: A solution based on reselection mechanism and feature disentanglement MantaRay-ProM: An efficient process model discovery algorithm Token-modification adversarial attacks for natural language processing: A survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1