Abdelali Hadir, Naima Kaabouch, Mohammed-Alamine El Houssaini, Jamal El Kafi
{"title":"基于智能群优化的物联网无距离定位方法","authors":"Abdelali Hadir, Naima Kaabouch, Mohammed-Alamine El Houssaini, Jamal El Kafi","doi":"10.3390/info14110592","DOIUrl":null,"url":null,"abstract":"Recently, the precise location of sensor nodes has emerged as a significant challenge in the realm of Internet of Things (IoT) applications, including Wireless Sensor Networks (WSNs). The accurate determination of geographical coordinates for detected events holds pivotal importance in these applications. Despite DV-Hop gaining popularity due to its cost-effectiveness, feasibility, and lack of additional hardware requirements, it remains hindered by a relatively notable localization error. To overcome this limitation, our study introduces three new localization approaches that combine DV-Hop with Chicken Swarm Optimization (CSO). The primary objective is to improve the precision of DV-Hop-based approaches. In this paper, we compare the efficiency of the proposed localization algorithms with other existing approaches, including several algorithms based on Particle Swarm Optimization (PSO), while considering random network topologies. The simulation results validate the efficiency of our proposed algorithms. The proposed HW-DV-HopCSO algorithm achieves a considerable improvement in positioning accuracy compared to those of existing models.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Range-Free Localization Approaches Based on Intelligent Swarm Optimization for Internet of Things\",\"authors\":\"Abdelali Hadir, Naima Kaabouch, Mohammed-Alamine El Houssaini, Jamal El Kafi\",\"doi\":\"10.3390/info14110592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the precise location of sensor nodes has emerged as a significant challenge in the realm of Internet of Things (IoT) applications, including Wireless Sensor Networks (WSNs). The accurate determination of geographical coordinates for detected events holds pivotal importance in these applications. Despite DV-Hop gaining popularity due to its cost-effectiveness, feasibility, and lack of additional hardware requirements, it remains hindered by a relatively notable localization error. To overcome this limitation, our study introduces three new localization approaches that combine DV-Hop with Chicken Swarm Optimization (CSO). The primary objective is to improve the precision of DV-Hop-based approaches. In this paper, we compare the efficiency of the proposed localization algorithms with other existing approaches, including several algorithms based on Particle Swarm Optimization (PSO), while considering random network topologies. The simulation results validate the efficiency of our proposed algorithms. The proposed HW-DV-HopCSO algorithm achieves a considerable improvement in positioning accuracy compared to those of existing models.\",\"PeriodicalId\":38479,\"journal\":{\"name\":\"Information (Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information (Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14110592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14110592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Range-Free Localization Approaches Based on Intelligent Swarm Optimization for Internet of Things
Recently, the precise location of sensor nodes has emerged as a significant challenge in the realm of Internet of Things (IoT) applications, including Wireless Sensor Networks (WSNs). The accurate determination of geographical coordinates for detected events holds pivotal importance in these applications. Despite DV-Hop gaining popularity due to its cost-effectiveness, feasibility, and lack of additional hardware requirements, it remains hindered by a relatively notable localization error. To overcome this limitation, our study introduces three new localization approaches that combine DV-Hop with Chicken Swarm Optimization (CSO). The primary objective is to improve the precision of DV-Hop-based approaches. In this paper, we compare the efficiency of the proposed localization algorithms with other existing approaches, including several algorithms based on Particle Swarm Optimization (PSO), while considering random network topologies. The simulation results validate the efficiency of our proposed algorithms. The proposed HW-DV-HopCSO algorithm achieves a considerable improvement in positioning accuracy compared to those of existing models.