Sara Majid, Khuram Shahzad Ahmad, Ibrahim A. A., Muhammad Azad Malik
{"title":"解密 Coumaphos:通过降解机制追踪其在岩石圈中的历程,并通过动力学研究评估其吸附能力","authors":"Sara Majid, Khuram Shahzad Ahmad, Ibrahim A. A., Muhammad Azad Malik","doi":"10.1002/kin.21699","DOIUrl":null,"url":null,"abstract":"<p>The fate of Coumaphos in the environment was evaluated through meticulous emulation and analysis of the intricate pedospheric matrices. The fate-determinative investigations entailed a meticulous examination of Coumaphos's behavior, encompassing adsorption and desorption characteristics and its decomposition rate via hydrolysis, photolysis, and intrinsic biological degradation in soil. The interactions between Coumaphos molecules and soils were found to be robust, with physiosorption being the predominant mode of interaction. Thermodynamic analysis, based on the negative values of Gibbs free energy (−23,569 to −15,798 kJ/mol), indicated exothermic and spontaneous adsorption processes. The highest adsorption capacity (<i>K</i><sub><i>d</i>(<i>ads</i>)</sub> = 34.97 μg/mL) was observed in soils with a notable organic matter content (1.99%), exhibiting a C-type isotherm that was confirmed through linear and Freundlich models. Analytical techniques such as ultraviolet-visible spectrophotometry and gas chromatography-mass spectrometry were employed to determine the fate of Coumaphos in soil matrices. The minimum half-lives of Coumaphos in hydrolysis, biodegradation, and photolysis experiments were 203, 52, and 69 days, respectively. These findings highlight the strong affinity of Coumaphos for the selected agricultural soils, indicating limited potential for transformation. Moreover, findings highlight the potential for further optimization of these degradative routes to devise practical strategies for environmental remediation utilizing natural processes.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding Coumaphos: Tracing its journey in the lithosphere via degradation mechanisms and assessing sorption proficiency through kinetics study\",\"authors\":\"Sara Majid, Khuram Shahzad Ahmad, Ibrahim A. A., Muhammad Azad Malik\",\"doi\":\"10.1002/kin.21699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fate of Coumaphos in the environment was evaluated through meticulous emulation and analysis of the intricate pedospheric matrices. The fate-determinative investigations entailed a meticulous examination of Coumaphos's behavior, encompassing adsorption and desorption characteristics and its decomposition rate via hydrolysis, photolysis, and intrinsic biological degradation in soil. The interactions between Coumaphos molecules and soils were found to be robust, with physiosorption being the predominant mode of interaction. Thermodynamic analysis, based on the negative values of Gibbs free energy (−23,569 to −15,798 kJ/mol), indicated exothermic and spontaneous adsorption processes. The highest adsorption capacity (<i>K</i><sub><i>d</i>(<i>ads</i>)</sub> = 34.97 μg/mL) was observed in soils with a notable organic matter content (1.99%), exhibiting a C-type isotherm that was confirmed through linear and Freundlich models. Analytical techniques such as ultraviolet-visible spectrophotometry and gas chromatography-mass spectrometry were employed to determine the fate of Coumaphos in soil matrices. The minimum half-lives of Coumaphos in hydrolysis, biodegradation, and photolysis experiments were 203, 52, and 69 days, respectively. These findings highlight the strong affinity of Coumaphos for the selected agricultural soils, indicating limited potential for transformation. Moreover, findings highlight the potential for further optimization of these degradative routes to devise practical strategies for environmental remediation utilizing natural processes.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21699\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21699","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Decoding Coumaphos: Tracing its journey in the lithosphere via degradation mechanisms and assessing sorption proficiency through kinetics study
The fate of Coumaphos in the environment was evaluated through meticulous emulation and analysis of the intricate pedospheric matrices. The fate-determinative investigations entailed a meticulous examination of Coumaphos's behavior, encompassing adsorption and desorption characteristics and its decomposition rate via hydrolysis, photolysis, and intrinsic biological degradation in soil. The interactions between Coumaphos molecules and soils were found to be robust, with physiosorption being the predominant mode of interaction. Thermodynamic analysis, based on the negative values of Gibbs free energy (−23,569 to −15,798 kJ/mol), indicated exothermic and spontaneous adsorption processes. The highest adsorption capacity (Kd(ads) = 34.97 μg/mL) was observed in soils with a notable organic matter content (1.99%), exhibiting a C-type isotherm that was confirmed through linear and Freundlich models. Analytical techniques such as ultraviolet-visible spectrophotometry and gas chromatography-mass spectrometry were employed to determine the fate of Coumaphos in soil matrices. The minimum half-lives of Coumaphos in hydrolysis, biodegradation, and photolysis experiments were 203, 52, and 69 days, respectively. These findings highlight the strong affinity of Coumaphos for the selected agricultural soils, indicating limited potential for transformation. Moreover, findings highlight the potential for further optimization of these degradative routes to devise practical strategies for environmental remediation utilizing natural processes.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.