季节变化和水体连通性对城市湿地浮游植物、浮游动物和底栖生物多样性的分类效应

IF 1.3 4区 环境科学与生态学 Q3 ECOLOGY Journal of Freshwater Ecology Pub Date : 2023-08-26 DOI:10.1080/02705060.2023.2253265
Jingwen Hu, Lei Hua, Aiju You, Lin Chen, Zeqi Xu, Ziming Wang, Wei Zhang, Congcong Zhang, Genting Yu, Wenjia Tang
{"title":"季节变化和水体连通性对城市湿地浮游植物、浮游动物和底栖生物多样性的分类效应","authors":"Jingwen Hu, Lei Hua, Aiju You, Lin Chen, Zeqi Xu, Ziming Wang, Wei Zhang, Congcong Zhang, Genting Yu, Wenjia Tang","doi":"10.1080/02705060.2023.2253265","DOIUrl":null,"url":null,"abstract":"Climate change and human activities have altered the water environment and affected the community structure of aquatic organisms. Few studies have focused on the specific responses of multiple aquatic organisms, and their interactions, to environmental factors, particularly in urban wetland ecosystems. To address this gap, this study aimed to investigate the effects of seasonal variation and water connectivity on water properties and aquatic organisms in the Xixi wetland in Zhejiang Province, China. The results demonstrated that water properties showed significant differences with changes in the season and water connectivity, and the species richness, Shannon-Wiener index, Simpson diversity and Pielou evenness of aquatic organisms varied seasonally in riverways and ponds. Meanwhile, the response of various organisms to environmental factors was inconsistent. Dissolved oxygen and suspended solids greatly influenced phytoplankton, while water temperature was the principal factor affecting the diversity of zooplankton and benthic organisms. The partial least squares path model revealed that water properties had a significant direct positive effect on the diversity of the phytoplankton community, while it had a distinct direct negative effect on zooplankton community. Environmental factors influenced the diversity of benthic organisms through a trade-off way: directly through a significant negative effect on the benthic organisms, and through a significant positive effect on the phytoplankton, further influencing the benthic community in a significantly positive way. This study highlights the understanding of the patterns and underlying mechanisms of freshwater aquatic biodiversity, and the interaction of phytoplankton, zooplankton and benthic organisms to water environmental factors in freshwater ecosystems.","PeriodicalId":54830,"journal":{"name":"Journal of Freshwater Ecology","volume":"65 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taxon-specific effects of seasonal variation and water connectivity on the diversity of phytoplankton, zooplankton and benthic organisms in urban wetland\",\"authors\":\"Jingwen Hu, Lei Hua, Aiju You, Lin Chen, Zeqi Xu, Ziming Wang, Wei Zhang, Congcong Zhang, Genting Yu, Wenjia Tang\",\"doi\":\"10.1080/02705060.2023.2253265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change and human activities have altered the water environment and affected the community structure of aquatic organisms. Few studies have focused on the specific responses of multiple aquatic organisms, and their interactions, to environmental factors, particularly in urban wetland ecosystems. To address this gap, this study aimed to investigate the effects of seasonal variation and water connectivity on water properties and aquatic organisms in the Xixi wetland in Zhejiang Province, China. The results demonstrated that water properties showed significant differences with changes in the season and water connectivity, and the species richness, Shannon-Wiener index, Simpson diversity and Pielou evenness of aquatic organisms varied seasonally in riverways and ponds. Meanwhile, the response of various organisms to environmental factors was inconsistent. Dissolved oxygen and suspended solids greatly influenced phytoplankton, while water temperature was the principal factor affecting the diversity of zooplankton and benthic organisms. The partial least squares path model revealed that water properties had a significant direct positive effect on the diversity of the phytoplankton community, while it had a distinct direct negative effect on zooplankton community. Environmental factors influenced the diversity of benthic organisms through a trade-off way: directly through a significant negative effect on the benthic organisms, and through a significant positive effect on the phytoplankton, further influencing the benthic community in a significantly positive way. This study highlights the understanding of the patterns and underlying mechanisms of freshwater aquatic biodiversity, and the interaction of phytoplankton, zooplankton and benthic organisms to water environmental factors in freshwater ecosystems.\",\"PeriodicalId\":54830,\"journal\":{\"name\":\"Journal of Freshwater Ecology\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Freshwater Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02705060.2023.2253265\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Freshwater Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02705060.2023.2253265","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

气候变化和人类活动改变了水环境,影响了水生生物的群落结构。很少有研究关注多种水生生物对环境因素的具体反应及其相互作用,特别是在城市湿地生态系统中。为了弥补这一空白,本研究旨在探讨季节变化和水连通性对浙江西溪湿地水性质和水生生物的影响。结果表明:水体性质随季节和水体连通性的变化存在显著差异,水生物的物种丰富度、Shannon-Wiener指数、Simpson多样性和Pielou均匀度随季节变化而变化。同时,各种生物对环境因子的反应也不一致。溶解氧和悬浮物对浮游植物的影响较大,水温是影响浮游动物和底栖生物多样性的主要因素。偏最小二乘路径模型表明,水体性质对浮游植物群落多样性有显著的正向影响,而对浮游动物群落多样性有明显的负向影响。环境因子对底栖生物多样性的影响是一种权衡的方式:通过对底栖生物的显著负面影响直接影响底栖生物,通过对浮游植物的显著正面影响,进而对底栖生物群落产生显著正面影响。重点研究了淡水生态系统中浮游植物、浮游动物和底栖生物对水环境因子的相互作用规律和机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Taxon-specific effects of seasonal variation and water connectivity on the diversity of phytoplankton, zooplankton and benthic organisms in urban wetland
Climate change and human activities have altered the water environment and affected the community structure of aquatic organisms. Few studies have focused on the specific responses of multiple aquatic organisms, and their interactions, to environmental factors, particularly in urban wetland ecosystems. To address this gap, this study aimed to investigate the effects of seasonal variation and water connectivity on water properties and aquatic organisms in the Xixi wetland in Zhejiang Province, China. The results demonstrated that water properties showed significant differences with changes in the season and water connectivity, and the species richness, Shannon-Wiener index, Simpson diversity and Pielou evenness of aquatic organisms varied seasonally in riverways and ponds. Meanwhile, the response of various organisms to environmental factors was inconsistent. Dissolved oxygen and suspended solids greatly influenced phytoplankton, while water temperature was the principal factor affecting the diversity of zooplankton and benthic organisms. The partial least squares path model revealed that water properties had a significant direct positive effect on the diversity of the phytoplankton community, while it had a distinct direct negative effect on zooplankton community. Environmental factors influenced the diversity of benthic organisms through a trade-off way: directly through a significant negative effect on the benthic organisms, and through a significant positive effect on the phytoplankton, further influencing the benthic community in a significantly positive way. This study highlights the understanding of the patterns and underlying mechanisms of freshwater aquatic biodiversity, and the interaction of phytoplankton, zooplankton and benthic organisms to water environmental factors in freshwater ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
7.70%
发文量
34
审稿时长
3 months
期刊介绍: The Journal of Freshwater Ecology, published since 1981, is an open access peer-reviewed journal for the field of aquatic ecology of freshwater systems that is aimed at an international audience of researchers and professionals. Its coverage reflects the wide diversity of ecological subdisciplines and topics, including but not limited to physiological, population, community, and ecosystem ecology as well as biogeochemistry and ecohydrology of all types of freshwater systems including lentic, lotic, hyporheic and wetland systems. Studies that improve our understanding of anthropogenic impacts and changes to freshwater systems are also appropriate.
期刊最新文献
Evaluation of lake eutrophication under different hydrological connectivity conditions Unravelling wetland connectivity: a comparative analysis of landscape structure and connectivity between natural and unnatural (artificial) wetlands in Van Sub-basin Spatial distribution of the planktonic and sediment bacterial communities in algae- and macrophyte-dominated zones of the Chengdong Lake Comparison of freshwater diatom assemblage between old-growth broad-leaved and planted coniferous forest basins in temperate region, Japan Environmental DNA metabarcoding for whole community inventories of vertebrates in rivers of the midwestern United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1