临界长度是区分ML和AP方向棍棒平衡的一个很好的度量

IF 1.3 Q3 ENGINEERING, MECHANICAL PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING Pub Date : 2023-11-09 DOI:10.3311/ppme.22937
Dalma J. Nagy, Tamás Insperger
{"title":"临界长度是区分ML和AP方向棍棒平衡的一个很好的度量","authors":"Dalma J. Nagy, Tamás Insperger","doi":"10.3311/ppme.22937","DOIUrl":null,"url":null,"abstract":"Seven novice subjects participated in experiments of stick balancing on a linear track in the anterior-posterior (AP) and the medio-lateral (ML) directions. The goal of the experiments was to test how the depth perception in the subjects' AP direction affects balancing performance compared to balancing in the ML direction, where depth perception does not play a role. It is easier to balance longer sticks than shorter ones, therefore balancing performance is measured by the length of the shortest stick that subjects can balance. Subjects were found to be able to balance shorter sticks in the ML direction than in the AP direction: the ratio of the shortest stick lengths in the ML direction relative to the AP direction was in average 0.53. Thus, the additional challenge posed by depth perception in the AP direction is clearly observable. Additionally, repeated trials were carried out for 5 consecutive days to assess the development of balancing skill by using stabilometry analysis. The maximal balance time of the subjects significantly increased with the days of practice.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Critical Length is a Good Measure to Distinguish between Stick Balancing in the ML and AP Directions\",\"authors\":\"Dalma J. Nagy, Tamás Insperger\",\"doi\":\"10.3311/ppme.22937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seven novice subjects participated in experiments of stick balancing on a linear track in the anterior-posterior (AP) and the medio-lateral (ML) directions. The goal of the experiments was to test how the depth perception in the subjects' AP direction affects balancing performance compared to balancing in the ML direction, where depth perception does not play a role. It is easier to balance longer sticks than shorter ones, therefore balancing performance is measured by the length of the shortest stick that subjects can balance. Subjects were found to be able to balance shorter sticks in the ML direction than in the AP direction: the ratio of the shortest stick lengths in the ML direction relative to the AP direction was in average 0.53. Thus, the additional challenge posed by depth perception in the AP direction is clearly observable. Additionally, repeated trials were carried out for 5 consecutive days to assess the development of balancing skill by using stabilometry analysis. The maximal balance time of the subjects significantly increased with the days of practice.\",\"PeriodicalId\":43630,\"journal\":{\"name\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppme.22937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppme.22937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

7名新手参加了在前后方向和中外侧方向线性轨迹上的棍平衡实验。实验的目的是测试受试者在AP方向上的深度感知如何影响平衡性能,而在ML方向上,深度感知没有发挥作用。平衡较长的木棍比平衡较短的木棍更容易,因此平衡性能的衡量标准是受试者能够平衡的最短木棍的长度。研究发现,受试者能够在ML方向平衡较短的木棍,而在AP方向平衡较短的木棍:ML方向相对于AP方向的最短木棍长度之比平均为0.53。因此,AP方向的深度感知带来的额外挑战是显而易见的。此外,连续5天进行重复试验,通过稳定性分析来评估平衡技能的发展。受试者的最大平衡时间随练习天数的增加而显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Critical Length is a Good Measure to Distinguish between Stick Balancing in the ML and AP Directions
Seven novice subjects participated in experiments of stick balancing on a linear track in the anterior-posterior (AP) and the medio-lateral (ML) directions. The goal of the experiments was to test how the depth perception in the subjects' AP direction affects balancing performance compared to balancing in the ML direction, where depth perception does not play a role. It is easier to balance longer sticks than shorter ones, therefore balancing performance is measured by the length of the shortest stick that subjects can balance. Subjects were found to be able to balance shorter sticks in the ML direction than in the AP direction: the ratio of the shortest stick lengths in the ML direction relative to the AP direction was in average 0.53. Thus, the additional challenge posed by depth perception in the AP direction is clearly observable. Additionally, repeated trials were carried out for 5 consecutive days to assess the development of balancing skill by using stabilometry analysis. The maximal balance time of the subjects significantly increased with the days of practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
20 weeks
期刊介绍: Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.
期刊最新文献
Investigating Particle Paths in Intracranial Aneurysms: A Parametric Study The Critical Length is a Good Measure to Distinguish between Stick Balancing in the ML and AP Directions Global Approach on the Shear and Cross Tension Strength of Resistance Spot Welded Thin Steel Sheets Photovoltaic Energy Generation in Hungary: Potentials of Green Hydrogen Production by PEM Technology Numerical Analysis to Investigate the Impact of Skirt Geometric Parameters on Secondary Piston Movement in a Single-cylinder Diesel Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1