使用还是不使用空间德宾模型?——这就是问题所在

IF 1.5 3区 经济学 Q2 ECONOMICS Spatial Economic Analysis Pub Date : 2023-11-09 DOI:10.1080/17421772.2023.2256810
Malabika Koley, Anil K. Bera
{"title":"使用还是不使用空间德宾模型?——这就是问题所在","authors":"Malabika Koley, Anil K. Bera","doi":"10.1080/17421772.2023.2256810","DOIUrl":null,"url":null,"abstract":"ABSTRACT The spatial Durbin model (SDM) is one of the most widely used models in spatial econometrics. It originated as a generalisation of the spatial error model (SEM) under a non-linear parametric restriction (see Anselin (1988, pp. 110–111)). This restriction should be tested to select an appropriate model between SDM and SEM. Perhaps, due to the complexity of executing a test for a non-linear hypothesis, this restriction is rarely tested in practice, though see Burridge (1981), Mur and Angulo (2006) and LeSage and Pace (2009, p. 164). This paper considers an alternative linear hypothesis to test the suitability of the SDM. To achieve this, we first use Rao’s score (RS) testing principle and then Bera and Yoon (1993)’s methodology to robustify the original RS tests. The robust tests that require only ordinary least squares (OLS) estimation are able to identify the specific source(s) of departure(s) from the baseline linear regression model. An extensive Monte Carlo study provides evidence that our suggested tests possess excellent finite sample properties, both in terms of size and power. Our empirical illustrations, with two real data sets, attest that the tests developed in this paper could be very useful in judging the suitability of the SDM for the spatial data in hand.","PeriodicalId":47008,"journal":{"name":"Spatial Economic Analysis","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"To use, or not to use the spatial Durbin model? – that is the question\",\"authors\":\"Malabika Koley, Anil K. Bera\",\"doi\":\"10.1080/17421772.2023.2256810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The spatial Durbin model (SDM) is one of the most widely used models in spatial econometrics. It originated as a generalisation of the spatial error model (SEM) under a non-linear parametric restriction (see Anselin (1988, pp. 110–111)). This restriction should be tested to select an appropriate model between SDM and SEM. Perhaps, due to the complexity of executing a test for a non-linear hypothesis, this restriction is rarely tested in practice, though see Burridge (1981), Mur and Angulo (2006) and LeSage and Pace (2009, p. 164). This paper considers an alternative linear hypothesis to test the suitability of the SDM. To achieve this, we first use Rao’s score (RS) testing principle and then Bera and Yoon (1993)’s methodology to robustify the original RS tests. The robust tests that require only ordinary least squares (OLS) estimation are able to identify the specific source(s) of departure(s) from the baseline linear regression model. An extensive Monte Carlo study provides evidence that our suggested tests possess excellent finite sample properties, both in terms of size and power. Our empirical illustrations, with two real data sets, attest that the tests developed in this paper could be very useful in judging the suitability of the SDM for the spatial data in hand.\",\"PeriodicalId\":47008,\"journal\":{\"name\":\"Spatial Economic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Economic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17421772.2023.2256810\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Economic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17421772.2023.2256810","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

【摘要】空间德宾模型(spatial Durbin model, SDM)是空间计量经济学中应用最广泛的模型之一。它起源于非线性参数限制下的空间误差模型(SEM)的推广(见Anselin (Citation1988, pp. 110-111))。应该测试这个限制,以便在SDM和SEM之间选择合适的模型。也许,由于执行非线性假设测试的复杂性,这种限制很少在实践中进行测试,尽管参见Burridge (Citation1981), Mur和Angulo (Citation2006)和LeSage和Pace (Citation2009, p. 164)。本文考虑了另一种线性假设来检验SDM的适用性。为了实现这一点,我们首先使用Rao的分数(RS)测试原理,然后使用Bera和Yoon (Citation1993)的方法对原始RS测试进行鲁棒化。只需要普通最小二乘(OLS)估计的稳健检验能够确定偏离基线线性回归模型的具体来源。一项广泛的蒙特卡罗研究提供了证据,表明我们建议的测试在尺寸和功率方面都具有出色的有限样本特性。我们用两个真实数据集的实证说明,证明本文开发的测试在判断SDM对手头空间数据的适用性方面非常有用。关键词:sdm共因子限制规格测试格氏分数(RS)测试参数错标鲁棒RS测试我们非常感谢编辑和两位匿名审稿人的中肯意见和有益建议,他们极大地帮助了本文的内容和阐述。该论文的早期版本于2022年6月23日至24日在波兰华沙举行的第16届世界空间计量经济学协会会议(SEA 2022)上发表。我们感谢会议与会者的意见,特别是讨论者Roman Minguez教授对论文的认真阅读和宝贵的反馈。这篇论文也在印度统计研究所经济研究股、加尔各答大学城市经济研究中心第42届年度研讨会和贾达夫布尔大学经济系提出。我们要感谢组织委员会给我们机会介绍我们的论文,并感谢这些研讨会的与会者提供的建设性反馈,这些反馈进一步帮助我们编写了论文的改进版本。最后,我们非常感谢Geoffrey Hewings教授和Chang Lu博士为我们提供了他们的Illinois REALTORS数据。Lu博士还协助定义了我们在模型中使用的变量。当然,我们保留对任何剩余的错误和遗漏的责任。披露声明作者未报告潜在的利益冲突。注1:我们感谢其中一位审稿人将本文的实证结果提请我们注意我们感谢编辑使我们注意到这篇文章需要强调的是,这种空间相互作用可能是外生的,如两个地点之间的地理距离,也可能是内生的,如区域之间的社会和经济关系、社会网络模型中未观察到的特征或地方政府之间的战略税收相互作用(例如,参见Case等人(Citation1993)、Hsieh和Lee (Citation2016)和Delgado等人(Citation2018))。空间计量模型的构建和估计取决于最能代表数据空间特征的权重矩阵本质上是外生的还是内生的。在本文中,我们关注的是纯外生空间权重矩阵。内生W在估计和测试方面都带来了一些额外的复杂性,例如,参见Qu和Lee (Citation2015), Qu等人(Citation2017)和Bera, Doğan和Taşpınar (Citation2019)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
To use, or not to use the spatial Durbin model? – that is the question
ABSTRACT The spatial Durbin model (SDM) is one of the most widely used models in spatial econometrics. It originated as a generalisation of the spatial error model (SEM) under a non-linear parametric restriction (see Anselin (1988, pp. 110–111)). This restriction should be tested to select an appropriate model between SDM and SEM. Perhaps, due to the complexity of executing a test for a non-linear hypothesis, this restriction is rarely tested in practice, though see Burridge (1981), Mur and Angulo (2006) and LeSage and Pace (2009, p. 164). This paper considers an alternative linear hypothesis to test the suitability of the SDM. To achieve this, we first use Rao’s score (RS) testing principle and then Bera and Yoon (1993)’s methodology to robustify the original RS tests. The robust tests that require only ordinary least squares (OLS) estimation are able to identify the specific source(s) of departure(s) from the baseline linear regression model. An extensive Monte Carlo study provides evidence that our suggested tests possess excellent finite sample properties, both in terms of size and power. Our empirical illustrations, with two real data sets, attest that the tests developed in this paper could be very useful in judging the suitability of the SDM for the spatial data in hand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
21.70%
发文量
33
期刊介绍: Spatial Economic Analysis is a pioneering economics journal dedicated to the development of theory and methods in spatial economics, published by two of the world"s leading learned societies in the analysis of spatial economics, the Regional Studies Association and the British and Irish Section of the Regional Science Association International. A spatial perspective has become increasingly relevant to our understanding of economic phenomena, both on the global scale and at the scale of cities and regions. The growth in international trade, the opening up of emerging markets, the restructuring of the world economy along regional lines, and overall strategic and political significance of globalization, have re-emphasised the importance of geographical analysis.
期刊最新文献
Changes in domestic value added from exports: a structural decomposition approach Complexity-based diversification strategies: a new method for ranking promising activities for regional diversification A longitudinal analysis of local innovation in Italy: How do proximity measures matter? Spatial spillover effects in the labour market in a middle-income country Spatial macroeconomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1