Alejandra Correa-González, Joel Hernández-Bedolla, Marco Antonio Martínez-Cinco, Sonia Tatiana Sánchez-Quispe, Mario Alberto Hernández-Hernández
{"title":"基于SWAT/MODFLOW/MT3DMS耦合模型的漫源地下水硝酸盐时空格局评价","authors":"Alejandra Correa-González, Joel Hernández-Bedolla, Marco Antonio Martínez-Cinco, Sonia Tatiana Sánchez-Quispe, Mario Alberto Hernández-Hernández","doi":"10.3390/hydrology10110209","DOIUrl":null,"url":null,"abstract":"In recent years, due to various anthropogenic activities, such as agriculture and livestock, the presence of nitrogen-associated contaminants has been increasing in surface- and groundwater resources. Among these, the main compounds present in groundwater are ammonia, nitrite, and nitrate. However, it is sometimes difficult to assess such effects given the scarcity or lack of information and the complexity of the system. In the current study, a methodology is proposed to assess nitrate in groundwater from diffuse sources considering spatiotemporal patterns of hydrological systems using a coupled SWAT/MODFLOW/MT3DMS model. The application of the model is carried out using a simplified simulation scheme of hydrological and agricultural systems because of the limited spatial and temporal data. The study area includes the Cuitzeo Lake basin in superficial flow form and the Morelia–Querendaro aquifer in groundwater flow form. The results within the methodology are surface runoff, groundwater levels, and nitrate concentrations present in surface- and groundwater systems. The results indicate that the historical and simulated nitrate concentrations were obtained within acceptable values of the statistical parameters and, therefore, are considered adequate.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" 9","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Nitrate in Groundwater from Diffuse Sources Considering Spatiotemporal Patterns of Hydrological Systems Using a Coupled SWAT/MODFLOW/MT3DMS Model\",\"authors\":\"Alejandra Correa-González, Joel Hernández-Bedolla, Marco Antonio Martínez-Cinco, Sonia Tatiana Sánchez-Quispe, Mario Alberto Hernández-Hernández\",\"doi\":\"10.3390/hydrology10110209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, due to various anthropogenic activities, such as agriculture and livestock, the presence of nitrogen-associated contaminants has been increasing in surface- and groundwater resources. Among these, the main compounds present in groundwater are ammonia, nitrite, and nitrate. However, it is sometimes difficult to assess such effects given the scarcity or lack of information and the complexity of the system. In the current study, a methodology is proposed to assess nitrate in groundwater from diffuse sources considering spatiotemporal patterns of hydrological systems using a coupled SWAT/MODFLOW/MT3DMS model. The application of the model is carried out using a simplified simulation scheme of hydrological and agricultural systems because of the limited spatial and temporal data. The study area includes the Cuitzeo Lake basin in superficial flow form and the Morelia–Querendaro aquifer in groundwater flow form. The results within the methodology are surface runoff, groundwater levels, and nitrate concentrations present in surface- and groundwater systems. The results indicate that the historical and simulated nitrate concentrations were obtained within acceptable values of the statistical parameters and, therefore, are considered adequate.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":\" 9\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology10110209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10110209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Assessment of Nitrate in Groundwater from Diffuse Sources Considering Spatiotemporal Patterns of Hydrological Systems Using a Coupled SWAT/MODFLOW/MT3DMS Model
In recent years, due to various anthropogenic activities, such as agriculture and livestock, the presence of nitrogen-associated contaminants has been increasing in surface- and groundwater resources. Among these, the main compounds present in groundwater are ammonia, nitrite, and nitrate. However, it is sometimes difficult to assess such effects given the scarcity or lack of information and the complexity of the system. In the current study, a methodology is proposed to assess nitrate in groundwater from diffuse sources considering spatiotemporal patterns of hydrological systems using a coupled SWAT/MODFLOW/MT3DMS model. The application of the model is carried out using a simplified simulation scheme of hydrological and agricultural systems because of the limited spatial and temporal data. The study area includes the Cuitzeo Lake basin in superficial flow form and the Morelia–Querendaro aquifer in groundwater flow form. The results within the methodology are surface runoff, groundwater levels, and nitrate concentrations present in surface- and groundwater systems. The results indicate that the historical and simulated nitrate concentrations were obtained within acceptable values of the statistical parameters and, therefore, are considered adequate.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.