Hasan Nazari Mejdar, Ali Moridi, Saeid Najjar-Ghabel
{"title":"气候变化下跨界河流流域水量-水质评价的实例研究","authors":"Hasan Nazari Mejdar, Ali Moridi, Saeid Najjar-Ghabel","doi":"10.2166/wcc.2023.421","DOIUrl":null,"url":null,"abstract":"Abstract This study combined hydrological and water quality simulation models with a water resources planning model to project future water supply conditions under the dam construction in the Harirud River, located at the Afghanistan, Turkmenistan, and the Iran border. The sustainability requirements and possible conflicts among riparian countries were assessed under climate change and future development in Afghanistan's upstream. The water quantity and quality of the Doosti Dam Basin on the Harirud River were investigated based on a contemporary time (1955–2015) to predict the future condition (2020–2099). The representative concentration pathway scenarios were applied based on five bias-corrected climate models. Results showed that most areas of the study area experienced an increase in temperature (1.5–3.8°C) and a decrease in precipitation (19–24%). The Doosti Dam inflow decreased by about 70% after the Salma Dam construction, and the reliability and sustainability of agricultural water supply in Iran and Turkmenistan will reduce to less than 3% under the RCP 8.5 climate change scenario. In most scenarios, the eutrophication status of the Doosti Reservoir changed to hypereutrophic during the wet months. The results show that the Doosti Dam is not a reliable source to supply the domestic water demand of Mashhad, the second most important city in Iran.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":" 28","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water quantity–quality assessment in the transboundary river basin under climate change: a case study\",\"authors\":\"Hasan Nazari Mejdar, Ali Moridi, Saeid Najjar-Ghabel\",\"doi\":\"10.2166/wcc.2023.421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study combined hydrological and water quality simulation models with a water resources planning model to project future water supply conditions under the dam construction in the Harirud River, located at the Afghanistan, Turkmenistan, and the Iran border. The sustainability requirements and possible conflicts among riparian countries were assessed under climate change and future development in Afghanistan's upstream. The water quantity and quality of the Doosti Dam Basin on the Harirud River were investigated based on a contemporary time (1955–2015) to predict the future condition (2020–2099). The representative concentration pathway scenarios were applied based on five bias-corrected climate models. Results showed that most areas of the study area experienced an increase in temperature (1.5–3.8°C) and a decrease in precipitation (19–24%). The Doosti Dam inflow decreased by about 70% after the Salma Dam construction, and the reliability and sustainability of agricultural water supply in Iran and Turkmenistan will reduce to less than 3% under the RCP 8.5 climate change scenario. In most scenarios, the eutrophication status of the Doosti Reservoir changed to hypereutrophic during the wet months. The results show that the Doosti Dam is not a reliable source to supply the domestic water demand of Mashhad, the second most important city in Iran.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\" 28\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2023.421\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2023.421","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Water quantity–quality assessment in the transboundary river basin under climate change: a case study
Abstract This study combined hydrological and water quality simulation models with a water resources planning model to project future water supply conditions under the dam construction in the Harirud River, located at the Afghanistan, Turkmenistan, and the Iran border. The sustainability requirements and possible conflicts among riparian countries were assessed under climate change and future development in Afghanistan's upstream. The water quantity and quality of the Doosti Dam Basin on the Harirud River were investigated based on a contemporary time (1955–2015) to predict the future condition (2020–2099). The representative concentration pathway scenarios were applied based on five bias-corrected climate models. Results showed that most areas of the study area experienced an increase in temperature (1.5–3.8°C) and a decrease in precipitation (19–24%). The Doosti Dam inflow decreased by about 70% after the Salma Dam construction, and the reliability and sustainability of agricultural water supply in Iran and Turkmenistan will reduce to less than 3% under the RCP 8.5 climate change scenario. In most scenarios, the eutrophication status of the Doosti Reservoir changed to hypereutrophic during the wet months. The results show that the Doosti Dam is not a reliable source to supply the domestic water demand of Mashhad, the second most important city in Iran.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.