Alexandre Honorat, Mickaël Dardaillon, Hugo Miomandre, Jean-François Nezan
{"title":"高级合成工作流中数据流应用程序的自动缓冲区大小调整","authors":"Alexandre Honorat, Mickaël Dardaillon, Hugo Miomandre, Jean-François Nezan","doi":"10.1145/3626103","DOIUrl":null,"url":null,"abstract":"High-Level Synthesis (HLS) tools are mature enough to provide efficient code generation for computation kernels on FPGA hardware. For more complex applications, multiple kernels may be connected by a dataflow graph. Although some tools, such as Xilinx Vitis HLS, support dataflow directives, they lack efficient analysis methods to compute the buffer sizes between kernels in a dataflow graph. This paper proposes an original method to safely approximate such buffer sizes. The first contribution computes an initial overestimation of buffer sizes, wihout knowing the memory access patterns of kernels. The second contribution iteratively refines those buffer sizes thanks to cosimulation. Moreover, the paper introduces an open source framework using these methods to facilitate dataflow programming on FPGA using HLS. The proposed methods and framework have been tested on 7 dataflow applications, and outperform Vitis HLS cosimulation in 5 benchmarks, either in terms of BRAM and LUT usage, or in term of exploration time. In the 2 other benchmarks, our best method gets results similar to Vitis HLS. Last but not least, our method admits directed cycles in the application graphs.","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"62 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Buffer Sizing of Dataflow Applications in a High-Level Synthesis Workflow\",\"authors\":\"Alexandre Honorat, Mickaël Dardaillon, Hugo Miomandre, Jean-François Nezan\",\"doi\":\"10.1145/3626103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-Level Synthesis (HLS) tools are mature enough to provide efficient code generation for computation kernels on FPGA hardware. For more complex applications, multiple kernels may be connected by a dataflow graph. Although some tools, such as Xilinx Vitis HLS, support dataflow directives, they lack efficient analysis methods to compute the buffer sizes between kernels in a dataflow graph. This paper proposes an original method to safely approximate such buffer sizes. The first contribution computes an initial overestimation of buffer sizes, wihout knowing the memory access patterns of kernels. The second contribution iteratively refines those buffer sizes thanks to cosimulation. Moreover, the paper introduces an open source framework using these methods to facilitate dataflow programming on FPGA using HLS. The proposed methods and framework have been tested on 7 dataflow applications, and outperform Vitis HLS cosimulation in 5 benchmarks, either in terms of BRAM and LUT usage, or in term of exploration time. In the 2 other benchmarks, our best method gets results similar to Vitis HLS. Last but not least, our method admits directed cycles in the application graphs.\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626103\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626103","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Automated Buffer Sizing of Dataflow Applications in a High-Level Synthesis Workflow
High-Level Synthesis (HLS) tools are mature enough to provide efficient code generation for computation kernels on FPGA hardware. For more complex applications, multiple kernels may be connected by a dataflow graph. Although some tools, such as Xilinx Vitis HLS, support dataflow directives, they lack efficient analysis methods to compute the buffer sizes between kernels in a dataflow graph. This paper proposes an original method to safely approximate such buffer sizes. The first contribution computes an initial overestimation of buffer sizes, wihout knowing the memory access patterns of kernels. The second contribution iteratively refines those buffer sizes thanks to cosimulation. Moreover, the paper introduces an open source framework using these methods to facilitate dataflow programming on FPGA using HLS. The proposed methods and framework have been tested on 7 dataflow applications, and outperform Vitis HLS cosimulation in 5 benchmarks, either in terms of BRAM and LUT usage, or in term of exploration time. In the 2 other benchmarks, our best method gets results similar to Vitis HLS. Last but not least, our method admits directed cycles in the application graphs.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.