通过在硫加速硫化初期引入双马来酰亚胺的界面交联,改善了聚丙烯腈-共丁二烯/天然橡胶共混物的性能

IF 1.2 4区 工程技术 Q4 POLYMER SCIENCE Rubber Chemistry and Technology Pub Date : 2023-09-29 DOI:10.5254/rct-23.948326
Marek Pöschl, Shibulal G. Sathi, Radek Stoček
{"title":"通过在硫加速硫化初期引入双马来酰亚胺的界面交联,改善了聚丙烯腈-共丁二烯/天然橡胶共混物的性能","authors":"Marek Pöschl, Shibulal G. Sathi, Radek Stoček","doi":"10.5254/rct-23.948326","DOIUrl":null,"url":null,"abstract":"ABSTRACT To develop a technologically compatible blend of natural rubber (NR) and acrylonitrile-co-butadiene rubber (NBR) is always a challenge due to their polarity mismatch. As a result, the physico-mechanical properties of their blends will be generally poor. To address this issue, an attempt was made to increase the uniform distribution of crosslinks across the blend phases at the time of molding at 170 °C. A cure composition consisting of sulfur (S) and a delayed-action accelerator (N-cyclohexyl-2-benzothiazole sulfenamide: CBS) has been designed to co-crosslink both phases of the blend simultaneously. The tensile properties, particularly the tensile strength (TS) of the blend cured by this method were superior (approximately 371% greater) than the TS of the blend cured using a combination of S/CBS and an ultrafast accelerator (Tetramethylthiuram disulfide, TMTD). A bifunctional maleimide (Maleide F) was also employed in conjunction with S/CBS in the curing recipe to further improve the distribution of sulfidic crosslinks by reducing the interfacial tension between the NR and NBR phases via Alder-ene reaction.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPROVING THE PROPERTIES OF A POLY (ACRYLONITRILE-CO-BUTADIENE)/NATURAL RUBBER BLEND BY INTRODUCING INTERFACIAL CROSSLINKS USING BISMALEIMIDE DURING THE INITIAL PHASE OF ACCELERATED SULFUR CURING\",\"authors\":\"Marek Pöschl, Shibulal G. Sathi, Radek Stoček\",\"doi\":\"10.5254/rct-23.948326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT To develop a technologically compatible blend of natural rubber (NR) and acrylonitrile-co-butadiene rubber (NBR) is always a challenge due to their polarity mismatch. As a result, the physico-mechanical properties of their blends will be generally poor. To address this issue, an attempt was made to increase the uniform distribution of crosslinks across the blend phases at the time of molding at 170 °C. A cure composition consisting of sulfur (S) and a delayed-action accelerator (N-cyclohexyl-2-benzothiazole sulfenamide: CBS) has been designed to co-crosslink both phases of the blend simultaneously. The tensile properties, particularly the tensile strength (TS) of the blend cured by this method were superior (approximately 371% greater) than the TS of the blend cured using a combination of S/CBS and an ultrafast accelerator (Tetramethylthiuram disulfide, TMTD). A bifunctional maleimide (Maleide F) was also employed in conjunction with S/CBS in the curing recipe to further improve the distribution of sulfidic crosslinks by reducing the interfacial tension between the NR and NBR phases via Alder-ene reaction.\",\"PeriodicalId\":21349,\"journal\":{\"name\":\"Rubber Chemistry and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rubber Chemistry and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5254/rct-23.948326\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5254/rct-23.948326","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于天然橡胶(NR)和丙烯腈-共丁二烯橡胶(NBR)的极性不匹配,开发一种技术相容的共混物一直是一个挑战。因此,其共混物的物理机械性能通常较差。为了解决这个问题,尝试在170°C成型时增加跨共混相交联的均匀分布。设计了一种由硫(S)和延迟作用促进剂(n -环己基-2-苯并噻唑磺胺:CBS)组成的固化组合物,以同时共交联共混物的两相。该方法固化的共混物的拉伸性能,特别是拉伸强度(TS)比使用S/CBS和超快促进剂(四甲基硫脲,TMTD)的组合固化的共混物的TS优越(约371%)。双官能团马来酰亚胺(Maleide F)与S/CBS一起用于硫化配方,通过醛烯反应降低NR和NBR相之间的界面张力,进一步改善硫化交联的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IMPROVING THE PROPERTIES OF A POLY (ACRYLONITRILE-CO-BUTADIENE)/NATURAL RUBBER BLEND BY INTRODUCING INTERFACIAL CROSSLINKS USING BISMALEIMIDE DURING THE INITIAL PHASE OF ACCELERATED SULFUR CURING
ABSTRACT To develop a technologically compatible blend of natural rubber (NR) and acrylonitrile-co-butadiene rubber (NBR) is always a challenge due to their polarity mismatch. As a result, the physico-mechanical properties of their blends will be generally poor. To address this issue, an attempt was made to increase the uniform distribution of crosslinks across the blend phases at the time of molding at 170 °C. A cure composition consisting of sulfur (S) and a delayed-action accelerator (N-cyclohexyl-2-benzothiazole sulfenamide: CBS) has been designed to co-crosslink both phases of the blend simultaneously. The tensile properties, particularly the tensile strength (TS) of the blend cured by this method were superior (approximately 371% greater) than the TS of the blend cured using a combination of S/CBS and an ultrafast accelerator (Tetramethylthiuram disulfide, TMTD). A bifunctional maleimide (Maleide F) was also employed in conjunction with S/CBS in the curing recipe to further improve the distribution of sulfidic crosslinks by reducing the interfacial tension between the NR and NBR phases via Alder-ene reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rubber Chemistry and Technology
Rubber Chemistry and Technology 工程技术-高分子科学
CiteScore
3.50
自引率
20.00%
发文量
21
审稿时长
3.6 months
期刊介绍: The scope of RC&T covers: -Chemistry and Properties- Mechanics- Materials Science- Nanocomposites- Biotechnology- Rubber Recycling- Green Technology- Characterization and Simulation. Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.
期刊最新文献
FUNDAMENTAL APPROACH TO PREDICT TIRE AIR PRESSURE LOSS OVER TIME The Predictions And Verifications Of Universal Cooperative Relaxation And Diffusion In Materials A Modification of the Extended Tube Model (METM) for the Characterization of Filled Vulcanizates Development Of Hydrogenated Styrene Butadiene Rubber Based Vulcanizates With Superior Tyre Tread Performance Graphene as an Antioxidant and Antiozonant in Tire Sidewall Compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1