Hai-Zhen Wei, Martin Palmer, Jun-Lin Wang, Shao-Yong Jiang, Simon V. Hohl, Yuan-Feng Zhu, Chun Huan, Miao-Miao Zhang, YEŞİM YÜCEL ÖZTÜRK
{"title":"硼酸盐矿物与含水流体间平衡氧同位素分馏的密度泛函理论计算","authors":"Hai-Zhen Wei, Martin Palmer, Jun-Lin Wang, Shao-Yong Jiang, Simon V. Hohl, Yuan-Feng Zhu, Chun Huan, Miao-Miao Zhang, YEŞİM YÜCEL ÖZTÜRK","doi":"10.55730/1300-0985.1873","DOIUrl":null,"url":null,"abstract":"Borax, ulexite, and colemanite minerals are by far the most important economic source of boron and occur almost exclusively in nonmarine evaporite deposits. While much is known about the geological setting in which they are found, surprisingly little is known about the chemical and physical properties of the brines from which they are formed. Oxygen isotope studies have the potential to reveal important new information regarding borate formation, but unlike most other common oxygen-bearing salts precipitated from brines, there are no experimental data regarding the oxygen isotope fractionation factors between borates and brines. As a first attempt to address this gap in our understanding we have determined Δ18Oborate-water values between 0 and 100 °C using density functional theory calculations (DFT). These results predicted Δ18Oborate-water values of 12.87, 22.32, and 17.5 at 25 °C for borax, colemanite and ulexite, respectively.","PeriodicalId":49411,"journal":{"name":"Turkish Journal of Earth Sciences","volume":"5 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density functional theory calculations of equilibrium oxygen isotope fractionation between borate minerals and aqueous fluids\",\"authors\":\"Hai-Zhen Wei, Martin Palmer, Jun-Lin Wang, Shao-Yong Jiang, Simon V. Hohl, Yuan-Feng Zhu, Chun Huan, Miao-Miao Zhang, YEŞİM YÜCEL ÖZTÜRK\",\"doi\":\"10.55730/1300-0985.1873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Borax, ulexite, and colemanite minerals are by far the most important economic source of boron and occur almost exclusively in nonmarine evaporite deposits. While much is known about the geological setting in which they are found, surprisingly little is known about the chemical and physical properties of the brines from which they are formed. Oxygen isotope studies have the potential to reveal important new information regarding borate formation, but unlike most other common oxygen-bearing salts precipitated from brines, there are no experimental data regarding the oxygen isotope fractionation factors between borates and brines. As a first attempt to address this gap in our understanding we have determined Δ18Oborate-water values between 0 and 100 °C using density functional theory calculations (DFT). These results predicted Δ18Oborate-water values of 12.87, 22.32, and 17.5 at 25 °C for borax, colemanite and ulexite, respectively.\",\"PeriodicalId\":49411,\"journal\":{\"name\":\"Turkish Journal of Earth Sciences\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0985.1873\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0985.1873","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Density functional theory calculations of equilibrium oxygen isotope fractionation between borate minerals and aqueous fluids
Borax, ulexite, and colemanite minerals are by far the most important economic source of boron and occur almost exclusively in nonmarine evaporite deposits. While much is known about the geological setting in which they are found, surprisingly little is known about the chemical and physical properties of the brines from which they are formed. Oxygen isotope studies have the potential to reveal important new information regarding borate formation, but unlike most other common oxygen-bearing salts precipitated from brines, there are no experimental data regarding the oxygen isotope fractionation factors between borates and brines. As a first attempt to address this gap in our understanding we have determined Δ18Oborate-water values between 0 and 100 °C using density functional theory calculations (DFT). These results predicted Δ18Oborate-water values of 12.87, 22.32, and 17.5 at 25 °C for borax, colemanite and ulexite, respectively.
期刊介绍:
The Turkish Journal of Earth Sciences is published electronically 6 times a year by the Scientific and Technological Research
Council of Turkey (TÜBİTAK). It is an international English-language journal for the publication of significant original recent
research in a wide spectrum of topics in the earth sciences, such as geology, structural geology, tectonics, sedimentology,
geochemistry, geochronology, paleontology, igneous and metamorphic petrology, mineralogy, biostratigraphy, geophysics,
geomorphology, paleoecology and oceanography, and mineral deposits. Contribution is open to researchers of all nationalities.