{"title":"微纳米表面改性技术增强冷凝传热的研究","authors":"Younghun Shin, Kwon-Yeong Lee, Woonbong Hwang","doi":"10.7736/jkspe.023.058","DOIUrl":null,"url":null,"abstract":"Condensation is an important research topic that ensures increased energy efficiency. Our researchers aimed to optimize heat transfer in industrial heat exchanger tubes through surface modification. We first succeeded in fabricating superhydrophilic and superhydrophobic tubes using surface modification. We observed the condensation phenomenon on the outside of the tube and evaluated the heat transfer performance through a condensation experimental facility. As a result, we found that the condensation heat transfer efficiency of superhydrophobic tubes is superior to that of conventional tubes. However, the heat transfer efficiency of the superhydrophobic tube reduced with an increase in saturation. To improve performance degradation, superhydrophilic and superhydrophobic hybrid tubes were fabricated and evaluated for their potential to improve heat transfer efficiency. As a result, we found that the liquid film generated by filmwise condensation on the superhydrophilic surface swept past the residual droplets generated by dropwise condensation on the superhydrophobic surface, resulting in the best heat transfer performance. Our results break the stereotypes of previous studies and provide a new paradigm for achieving optimal heat transfer performance on large-area curved surfaces. This research is expected to be widely applied in a variety of industries where energy efficiency is critical.","PeriodicalId":37663,"journal":{"name":"Journal of the Korean Society for Precision Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Condensation Heat Transfer Enhancement Using Micro/Nano Surface Modification Techniques\",\"authors\":\"Younghun Shin, Kwon-Yeong Lee, Woonbong Hwang\",\"doi\":\"10.7736/jkspe.023.058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Condensation is an important research topic that ensures increased energy efficiency. Our researchers aimed to optimize heat transfer in industrial heat exchanger tubes through surface modification. We first succeeded in fabricating superhydrophilic and superhydrophobic tubes using surface modification. We observed the condensation phenomenon on the outside of the tube and evaluated the heat transfer performance through a condensation experimental facility. As a result, we found that the condensation heat transfer efficiency of superhydrophobic tubes is superior to that of conventional tubes. However, the heat transfer efficiency of the superhydrophobic tube reduced with an increase in saturation. To improve performance degradation, superhydrophilic and superhydrophobic hybrid tubes were fabricated and evaluated for their potential to improve heat transfer efficiency. As a result, we found that the liquid film generated by filmwise condensation on the superhydrophilic surface swept past the residual droplets generated by dropwise condensation on the superhydrophobic surface, resulting in the best heat transfer performance. Our results break the stereotypes of previous studies and provide a new paradigm for achieving optimal heat transfer performance on large-area curved surfaces. This research is expected to be widely applied in a variety of industries where energy efficiency is critical.\",\"PeriodicalId\":37663,\"journal\":{\"name\":\"Journal of the Korean Society for Precision Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Precision Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7736/jkspe.023.058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7736/jkspe.023.058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Study of Condensation Heat Transfer Enhancement Using Micro/Nano Surface Modification Techniques
Condensation is an important research topic that ensures increased energy efficiency. Our researchers aimed to optimize heat transfer in industrial heat exchanger tubes through surface modification. We first succeeded in fabricating superhydrophilic and superhydrophobic tubes using surface modification. We observed the condensation phenomenon on the outside of the tube and evaluated the heat transfer performance through a condensation experimental facility. As a result, we found that the condensation heat transfer efficiency of superhydrophobic tubes is superior to that of conventional tubes. However, the heat transfer efficiency of the superhydrophobic tube reduced with an increase in saturation. To improve performance degradation, superhydrophilic and superhydrophobic hybrid tubes were fabricated and evaluated for their potential to improve heat transfer efficiency. As a result, we found that the liquid film generated by filmwise condensation on the superhydrophilic surface swept past the residual droplets generated by dropwise condensation on the superhydrophobic surface, resulting in the best heat transfer performance. Our results break the stereotypes of previous studies and provide a new paradigm for achieving optimal heat transfer performance on large-area curved surfaces. This research is expected to be widely applied in a variety of industries where energy efficiency is critical.
期刊介绍:
Journal of the Korean Society for Precision Engineering (JKSPE) is devoted to publishing original research articles with high ethical standard on all aspects of precision engineering and manufacturing. Specifically, the journal focuses on articles related to improving the precision of machines and manufacturing processes through implementation of creative solutions that stem from advanced research using novel experimental methods, predictive modeling techniques, and rigorous analyses based on mechanical engineering or multidisciplinary approach. The expected outcomes of the knowledge disseminated from JKSPE are enhanced reliability, better motion precision, higher measurement accuracy, and sufficient reliability of precision systems. The various topics covered by JKSPE include: Precision Manufacturing processes, Precision Measurements, Robotics and Automation / Control, Smart Manufacturing System, Design and Materials, Machine Tools, Nano/Micro Technology, Biomechanical Engineering, Additive Manufacturing System, Green Manufacturing Technology.