用于污染预测的智能空气监测系统:预测性医疗保健的视角

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Journal Pub Date : 2023-10-08 DOI:10.1093/comjnl/bxad099
Veerawali Behal, Ramandeep Singh
{"title":"用于污染预测的智能空气监测系统:预测性医疗保健的视角","authors":"Veerawali Behal, Ramandeep Singh","doi":"10.1093/comjnl/bxad099","DOIUrl":null,"url":null,"abstract":"Abstract The extensive potential of Internet of Things (IoT) technology has enabled the widespread real-time perception and analysis of health conditions. Furthermore, the integration of IoT in the healthcare industry has resulted in the development of intelligent applications, including smartphone-based healthcare, wellness-aware recommendations and smart medical systems. Building upon these technological advancements, this research puts forth an enhanced framework designed for the real-time monitoring, detection and prediction of health vulnerabilities arising from air pollution. Specifically, a four-layered model is presented to categorize health-impacting particles associated with air pollution into distinct classes based on probabilistic parameters of Health Adversity (HA). Subsequently, the HA parameters are extracted and temporally analyzed using FogBus, a fog computing platform, to identify vulnerabilities in individual health. To facilitate accurate prediction, an assessment of the Air Impact on Health is conducted using a Differential Evolution-Recurrent Neural Network. Moreover, the temporal analysis of health vulnerability employs the Self-Organized Mapping technique for visualization. The proposed model’s validity is evaluated using a challenging dataset comprising nearly 60 212 data instances obtained from the online University of California, Irvine repository. Performance enhancement is assessed by comparing the proposed model with state-of-the-art decision-making techniques, considering statistical parameters such as temporal effectiveness, coefficient of determination, accuracy, specificity, sensitivity, reliability and stability.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"51 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Air Monitoring System For Pollution Prediction: A Predictive Healthcare Perspective\",\"authors\":\"Veerawali Behal, Ramandeep Singh\",\"doi\":\"10.1093/comjnl/bxad099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The extensive potential of Internet of Things (IoT) technology has enabled the widespread real-time perception and analysis of health conditions. Furthermore, the integration of IoT in the healthcare industry has resulted in the development of intelligent applications, including smartphone-based healthcare, wellness-aware recommendations and smart medical systems. Building upon these technological advancements, this research puts forth an enhanced framework designed for the real-time monitoring, detection and prediction of health vulnerabilities arising from air pollution. Specifically, a four-layered model is presented to categorize health-impacting particles associated with air pollution into distinct classes based on probabilistic parameters of Health Adversity (HA). Subsequently, the HA parameters are extracted and temporally analyzed using FogBus, a fog computing platform, to identify vulnerabilities in individual health. To facilitate accurate prediction, an assessment of the Air Impact on Health is conducted using a Differential Evolution-Recurrent Neural Network. Moreover, the temporal analysis of health vulnerability employs the Self-Organized Mapping technique for visualization. The proposed model’s validity is evaluated using a challenging dataset comprising nearly 60 212 data instances obtained from the online University of California, Irvine repository. Performance enhancement is assessed by comparing the proposed model with state-of-the-art decision-making techniques, considering statistical parameters such as temporal effectiveness, coefficient of determination, accuracy, specificity, sensitivity, reliability and stability.\",\"PeriodicalId\":50641,\"journal\":{\"name\":\"Computer Journal\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/comjnl/bxad099\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comjnl/bxad099","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)技术的广泛潜力使健康状况的广泛实时感知和分析成为可能。此外,物联网在医疗保健行业的整合导致了智能应用的发展,包括基于智能手机的医疗保健、健康感知建议和智能医疗系统。在这些技术进步的基础上,本研究提出了一个增强的框架,旨在实时监测、检测和预测空气污染引起的健康脆弱性。具体而言,提出了一个基于健康逆境(HA)概率参数的四层模型,将与空气污染相关的影响健康的颗粒分为不同的类别。随后,使用雾计算平台FogBus提取HA参数并进行临时分析,以识别个人健康中的漏洞。为了便于准确预测,使用差分进化-递归神经网络对空气对健康的影响进行评估。此外,健康脆弱性的时间分析采用自组织映射技术进行可视化。使用一个具有挑战性的数据集来评估所提出模型的有效性,该数据集包括从加州大学欧文分校在线存储库获得的近60212个数据实例。通过将所提出的模型与最先进的决策技术进行比较,考虑诸如时间有效性、决定系数、准确性、特异性、敏感性、可靠性和稳定性等统计参数,评估性能增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Intelligent Air Monitoring System For Pollution Prediction: A Predictive Healthcare Perspective
Abstract The extensive potential of Internet of Things (IoT) technology has enabled the widespread real-time perception and analysis of health conditions. Furthermore, the integration of IoT in the healthcare industry has resulted in the development of intelligent applications, including smartphone-based healthcare, wellness-aware recommendations and smart medical systems. Building upon these technological advancements, this research puts forth an enhanced framework designed for the real-time monitoring, detection and prediction of health vulnerabilities arising from air pollution. Specifically, a four-layered model is presented to categorize health-impacting particles associated with air pollution into distinct classes based on probabilistic parameters of Health Adversity (HA). Subsequently, the HA parameters are extracted and temporally analyzed using FogBus, a fog computing platform, to identify vulnerabilities in individual health. To facilitate accurate prediction, an assessment of the Air Impact on Health is conducted using a Differential Evolution-Recurrent Neural Network. Moreover, the temporal analysis of health vulnerability employs the Self-Organized Mapping technique for visualization. The proposed model’s validity is evaluated using a challenging dataset comprising nearly 60 212 data instances obtained from the online University of California, Irvine repository. Performance enhancement is assessed by comparing the proposed model with state-of-the-art decision-making techniques, considering statistical parameters such as temporal effectiveness, coefficient of determination, accuracy, specificity, sensitivity, reliability and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Journal
Computer Journal 工程技术-计算机:软件工程
CiteScore
3.60
自引率
7.10%
发文量
164
审稿时长
4.8 months
期刊介绍: The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.
期刊最新文献
Correction to: Automatic Diagnosis of Diabetic Retinopathy from Retinal Abnormalities: Improved Jaya-Based Feature Selection and Recurrent Neural Network Eager Term Rewriting For The Fracterm Calculus Of Common Meadows An Intrusion Detection Method Based on Attention Mechanism to Improve CNN-BiLSTM Model Enhancing Auditory Brainstem Response Classification Based On Vision Transformer Leveraging Meta-Learning To Improve Unsupervised Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1