{"title":"用于污染预测的智能空气监测系统:预测性医疗保健的视角","authors":"Veerawali Behal, Ramandeep Singh","doi":"10.1093/comjnl/bxad099","DOIUrl":null,"url":null,"abstract":"Abstract The extensive potential of Internet of Things (IoT) technology has enabled the widespread real-time perception and analysis of health conditions. Furthermore, the integration of IoT in the healthcare industry has resulted in the development of intelligent applications, including smartphone-based healthcare, wellness-aware recommendations and smart medical systems. Building upon these technological advancements, this research puts forth an enhanced framework designed for the real-time monitoring, detection and prediction of health vulnerabilities arising from air pollution. Specifically, a four-layered model is presented to categorize health-impacting particles associated with air pollution into distinct classes based on probabilistic parameters of Health Adversity (HA). Subsequently, the HA parameters are extracted and temporally analyzed using FogBus, a fog computing platform, to identify vulnerabilities in individual health. To facilitate accurate prediction, an assessment of the Air Impact on Health is conducted using a Differential Evolution-Recurrent Neural Network. Moreover, the temporal analysis of health vulnerability employs the Self-Organized Mapping technique for visualization. The proposed model’s validity is evaluated using a challenging dataset comprising nearly 60 212 data instances obtained from the online University of California, Irvine repository. Performance enhancement is assessed by comparing the proposed model with state-of-the-art decision-making techniques, considering statistical parameters such as temporal effectiveness, coefficient of determination, accuracy, specificity, sensitivity, reliability and stability.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"51 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Air Monitoring System For Pollution Prediction: A Predictive Healthcare Perspective\",\"authors\":\"Veerawali Behal, Ramandeep Singh\",\"doi\":\"10.1093/comjnl/bxad099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The extensive potential of Internet of Things (IoT) technology has enabled the widespread real-time perception and analysis of health conditions. Furthermore, the integration of IoT in the healthcare industry has resulted in the development of intelligent applications, including smartphone-based healthcare, wellness-aware recommendations and smart medical systems. Building upon these technological advancements, this research puts forth an enhanced framework designed for the real-time monitoring, detection and prediction of health vulnerabilities arising from air pollution. Specifically, a four-layered model is presented to categorize health-impacting particles associated with air pollution into distinct classes based on probabilistic parameters of Health Adversity (HA). Subsequently, the HA parameters are extracted and temporally analyzed using FogBus, a fog computing platform, to identify vulnerabilities in individual health. To facilitate accurate prediction, an assessment of the Air Impact on Health is conducted using a Differential Evolution-Recurrent Neural Network. Moreover, the temporal analysis of health vulnerability employs the Self-Organized Mapping technique for visualization. The proposed model’s validity is evaluated using a challenging dataset comprising nearly 60 212 data instances obtained from the online University of California, Irvine repository. Performance enhancement is assessed by comparing the proposed model with state-of-the-art decision-making techniques, considering statistical parameters such as temporal effectiveness, coefficient of determination, accuracy, specificity, sensitivity, reliability and stability.\",\"PeriodicalId\":50641,\"journal\":{\"name\":\"Computer Journal\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/comjnl/bxad099\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comjnl/bxad099","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
An Intelligent Air Monitoring System For Pollution Prediction: A Predictive Healthcare Perspective
Abstract The extensive potential of Internet of Things (IoT) technology has enabled the widespread real-time perception and analysis of health conditions. Furthermore, the integration of IoT in the healthcare industry has resulted in the development of intelligent applications, including smartphone-based healthcare, wellness-aware recommendations and smart medical systems. Building upon these technological advancements, this research puts forth an enhanced framework designed for the real-time monitoring, detection and prediction of health vulnerabilities arising from air pollution. Specifically, a four-layered model is presented to categorize health-impacting particles associated with air pollution into distinct classes based on probabilistic parameters of Health Adversity (HA). Subsequently, the HA parameters are extracted and temporally analyzed using FogBus, a fog computing platform, to identify vulnerabilities in individual health. To facilitate accurate prediction, an assessment of the Air Impact on Health is conducted using a Differential Evolution-Recurrent Neural Network. Moreover, the temporal analysis of health vulnerability employs the Self-Organized Mapping technique for visualization. The proposed model’s validity is evaluated using a challenging dataset comprising nearly 60 212 data instances obtained from the online University of California, Irvine repository. Performance enhancement is assessed by comparing the proposed model with state-of-the-art decision-making techniques, considering statistical parameters such as temporal effectiveness, coefficient of determination, accuracy, specificity, sensitivity, reliability and stability.
期刊介绍:
The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.