{"title":"考虑过程变异性与延迟时间的水质模型的图形校准方法:理论与实例研究","authors":"Eyal Brill, Michael Bendersky","doi":"10.3390/computation11100200","DOIUrl":null,"url":null,"abstract":"Process Variability (PV) is a significant water quality time-series measurement. It is a critical element in detecting abnormality. Typically, the quality control system should raise an alert if the PV exceeds its normal value after a proper delay time (DT). The literature does not address the relation between the extended process variability and the time delay for a warning. The current paper shows a graphical method for calibrating a Water Quality Model based on these two parameters. The amount of variability is calculated based on the Euclidean distance between records in a dataset. Typically, each multivariable process has some relation between the variability and the time delay. In the case of a short period (a few minutes), the PV may be high. However, as the relevant DT is longer, it is expected to see the PV converge to some steady state. The current paper examines a method for estimating the relationship between the two measurements (PV and DT) as a detection tool for abnormality. Given the user’s classification of the actual event for true and false events, the method shows how to build a graphical map that helps the user select the best thresholds for the model. The last section of the paper offers an implementation of the method using real-world data.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"119 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Graphical Calibration Method for a Water Quality Model Considering Process Variability Versus Delay Time: Theory and a Case Study\",\"authors\":\"Eyal Brill, Michael Bendersky\",\"doi\":\"10.3390/computation11100200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process Variability (PV) is a significant water quality time-series measurement. It is a critical element in detecting abnormality. Typically, the quality control system should raise an alert if the PV exceeds its normal value after a proper delay time (DT). The literature does not address the relation between the extended process variability and the time delay for a warning. The current paper shows a graphical method for calibrating a Water Quality Model based on these two parameters. The amount of variability is calculated based on the Euclidean distance between records in a dataset. Typically, each multivariable process has some relation between the variability and the time delay. In the case of a short period (a few minutes), the PV may be high. However, as the relevant DT is longer, it is expected to see the PV converge to some steady state. The current paper examines a method for estimating the relationship between the two measurements (PV and DT) as a detection tool for abnormality. Given the user’s classification of the actual event for true and false events, the method shows how to build a graphical map that helps the user select the best thresholds for the model. The last section of the paper offers an implementation of the method using real-world data.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11100200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11100200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Graphical Calibration Method for a Water Quality Model Considering Process Variability Versus Delay Time: Theory and a Case Study
Process Variability (PV) is a significant water quality time-series measurement. It is a critical element in detecting abnormality. Typically, the quality control system should raise an alert if the PV exceeds its normal value after a proper delay time (DT). The literature does not address the relation between the extended process variability and the time delay for a warning. The current paper shows a graphical method for calibrating a Water Quality Model based on these two parameters. The amount of variability is calculated based on the Euclidean distance between records in a dataset. Typically, each multivariable process has some relation between the variability and the time delay. In the case of a short period (a few minutes), the PV may be high. However, as the relevant DT is longer, it is expected to see the PV converge to some steady state. The current paper examines a method for estimating the relationship between the two measurements (PV and DT) as a detection tool for abnormality. Given the user’s classification of the actual event for true and false events, the method shows how to build a graphical map that helps the user select the best thresholds for the model. The last section of the paper offers an implementation of the method using real-world data.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.