用于生物界面的功能性粘接水凝胶

Changyi Liu, Kexin Peng, Yilun Wu, Fanfan Fu
{"title":"用于生物界面的功能性粘接水凝胶","authors":"Changyi Liu, Kexin Peng, Yilun Wu, Fanfan Fu","doi":"10.1002/smmd.20230024","DOIUrl":null,"url":null,"abstract":"Abstract Hydrogel adhesives are extensively employed in biological interfaces such as epidermal flexible electronics, tissue engineering, and implanted device. The development of functional hydrogel adhesives is a critical, yet challenging task since combining two or more attributes that seem incompatible into one adhesive hydrogel without sacrificing the hydrogel's pristine capabilities. In this Review, we highlight current developments in the fabrication of functional adhesive hydrogels, which are suitable for a variety of application scenarios, particularly those that occur underwater or on tissue/organ surface conditions. The design strategies for a multifunctional adhesive hydrogel with desirable properties including underwater adhesion, self‐healing, good biocompatibility, electrical conductivity, and anti‐swelling are discussed comprehensively. We then discuss the challenges faced by adhesive hydrogels, as well as their potential applications in biological interfaces. Adhesive hydrogels are the star building blocks of bio‐interface materials for individualized healthcare and other bioengineering areas.","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional adhesive hydrogels for biological interfaces\",\"authors\":\"Changyi Liu, Kexin Peng, Yilun Wu, Fanfan Fu\",\"doi\":\"10.1002/smmd.20230024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hydrogel adhesives are extensively employed in biological interfaces such as epidermal flexible electronics, tissue engineering, and implanted device. The development of functional hydrogel adhesives is a critical, yet challenging task since combining two or more attributes that seem incompatible into one adhesive hydrogel without sacrificing the hydrogel's pristine capabilities. In this Review, we highlight current developments in the fabrication of functional adhesive hydrogels, which are suitable for a variety of application scenarios, particularly those that occur underwater or on tissue/organ surface conditions. The design strategies for a multifunctional adhesive hydrogel with desirable properties including underwater adhesion, self‐healing, good biocompatibility, electrical conductivity, and anti‐swelling are discussed comprehensively. We then discuss the challenges faced by adhesive hydrogels, as well as their potential applications in biological interfaces. Adhesive hydrogels are the star building blocks of bio‐interface materials for individualized healthcare and other bioengineering areas.\",\"PeriodicalId\":74816,\"journal\":{\"name\":\"Smart medicine\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smmd.20230024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smmd.20230024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要水凝胶黏合剂广泛应用于表皮柔性电子学、组织工程、植入式装置等生物界面领域。开发功能性水凝胶粘合剂是一项关键而又具有挑战性的任务,因为在不牺牲水凝胶原始性能的情况下,将两种或多种似乎不相容的属性结合到一个粘合剂水凝胶中。在这篇综述中,我们重点介绍了功能粘合剂水凝胶的制造的最新进展,它适用于各种应用场景,特别是那些发生在水下或组织/器官表面条件下的应用。全面讨论了具有水下粘附、自愈、良好生物相容性、导电性和抗膨胀等性能的多功能胶粘剂水凝胶的设计策略。然后,我们讨论了粘合剂水凝胶面临的挑战,以及它们在生物界面中的潜在应用。粘合剂水凝胶是个性化医疗保健和其他生物工程领域生物界面材料的明星构建块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Functional adhesive hydrogels for biological interfaces
Abstract Hydrogel adhesives are extensively employed in biological interfaces such as epidermal flexible electronics, tissue engineering, and implanted device. The development of functional hydrogel adhesives is a critical, yet challenging task since combining two or more attributes that seem incompatible into one adhesive hydrogel without sacrificing the hydrogel's pristine capabilities. In this Review, we highlight current developments in the fabrication of functional adhesive hydrogels, which are suitable for a variety of application scenarios, particularly those that occur underwater or on tissue/organ surface conditions. The design strategies for a multifunctional adhesive hydrogel with desirable properties including underwater adhesion, self‐healing, good biocompatibility, electrical conductivity, and anti‐swelling are discussed comprehensively. We then discuss the challenges faced by adhesive hydrogels, as well as their potential applications in biological interfaces. Adhesive hydrogels are the star building blocks of bio‐interface materials for individualized healthcare and other bioengineering areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics. Dear-PSM: A deep learning-based peptide search engine enables full database search for proteomics. Developing functional hydrogels for treatment of oral diseases Sustainable synthesis of carbon dots via bio‐waste recycling for biomedical imaging Engineering strategies for apoptotic bodies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1