选民模型对抗性攻击中的交叉现象

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Physics Complexity Pub Date : 2023-09-01 DOI:10.1088/2632-072x/acf90b
Shogo Mizutaka
{"title":"选民模型对抗性攻击中的交叉现象","authors":"Shogo Mizutaka","doi":"10.1088/2632-072x/acf90b","DOIUrl":null,"url":null,"abstract":"Abstract A recent study (Chiyomaru and Takemoto 2022 Phys. Rev. E 106 014301) considered adversarial attacks conducted to distort voter model dynamics in networks. This method intervenes in the interaction patterns of individuals and induces them to be in a target opinion state through a small perturbation ε . In this study, we investigate adversarial attacks on voter dynamics in random networks of finite size n . The exit probability P +1 to reach the target absorbing state and the mean time τ n to reach consensus are analyzed in the mean-field approximation. Given ε > 0, the exit probability P +1 converges asymptotically to unity as n increases. The mean time τ n to reach consensus scales as <?CDATA $(\\ln \\epsilon n)/\\epsilon$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ln</mml:mi> <mml:mi>ϵ</mml:mi> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> </mml:mrow> </mml:math> for homogeneous networks with a large finite n . By contrast, it scales as <?CDATA $(\\ln (\\epsilon\\mu_1^2n/\\mu_2))/\\epsilon$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo form=\"prefix\">ln</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ϵ</mml:mi> <mml:msubsup> <mml:mi>μ</mml:mi> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>ϵ</mml:mi> </mml:math> for heterogeneous networks with a large finite n , where µ 1 and µ 2 represent the first and second moments of the degree distribution, respectively. Moreover, we observe the crossover phenomenon of τ n from a linear scale to a logarithmic scale and find <?CDATA $n_{\\mathrm{co}}\\sim \\epsilon^{-1/\\alpha}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mi>n</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"normal\">c</mml:mi> <mml:mi mathvariant=\"normal\">o</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>∼</mml:mo> <mml:msup> <mml:mi>ϵ</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:math> above which the state of all nodes becomes the target state in logarithmic time. Here, α = 1 for homogeneous networks and <?CDATA $\\alpha = (\\gamma-1)/2$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:math> for scale-free networks with a degree exponent <?CDATA $2\\lt\\gamma\\lt3$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>2</mml:mn> <mml:mo><</mml:mo> <mml:mi>γ</mml:mi> <mml:mo><</mml:mo> <mml:mn>3</mml:mn> </mml:math> .","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"15 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crossover phenomenon in adversarial attacks on voter model\",\"authors\":\"Shogo Mizutaka\",\"doi\":\"10.1088/2632-072x/acf90b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A recent study (Chiyomaru and Takemoto 2022 Phys. Rev. E 106 014301) considered adversarial attacks conducted to distort voter model dynamics in networks. This method intervenes in the interaction patterns of individuals and induces them to be in a target opinion state through a small perturbation ε . In this study, we investigate adversarial attacks on voter dynamics in random networks of finite size n . The exit probability P +1 to reach the target absorbing state and the mean time τ n to reach consensus are analyzed in the mean-field approximation. Given ε > 0, the exit probability P +1 converges asymptotically to unity as n increases. The mean time τ n to reach consensus scales as <?CDATA $(\\\\ln \\\\epsilon n)/\\\\epsilon$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>ln</mml:mi> <mml:mi>ϵ</mml:mi> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>/</mml:mo> <mml:mi>ϵ</mml:mi> </mml:mrow> </mml:math> for homogeneous networks with a large finite n . By contrast, it scales as <?CDATA $(\\\\ln (\\\\epsilon\\\\mu_1^2n/\\\\mu_2))/\\\\epsilon$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mo form=\\\"prefix\\\">ln</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>ϵ</mml:mi> <mml:msubsup> <mml:mi>μ</mml:mi> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>μ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>ϵ</mml:mi> </mml:math> for heterogeneous networks with a large finite n , where µ 1 and µ 2 represent the first and second moments of the degree distribution, respectively. Moreover, we observe the crossover phenomenon of τ n from a linear scale to a logarithmic scale and find <?CDATA $n_{\\\\mathrm{co}}\\\\sim \\\\epsilon^{-1/\\\\alpha}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mi>n</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">c</mml:mi> <mml:mi mathvariant=\\\"normal\\\">o</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo>∼</mml:mo> <mml:msup> <mml:mi>ϵ</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> </mml:msup> </mml:math> above which the state of all nodes becomes the target state in logarithmic time. Here, α = 1 for homogeneous networks and <?CDATA $\\\\alpha = (\\\\gamma-1)/2$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>γ</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:math> for scale-free networks with a degree exponent <?CDATA $2\\\\lt\\\\gamma\\\\lt3$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mn>2</mml:mn> <mml:mo><</mml:mo> <mml:mi>γ</mml:mi> <mml:mo><</mml:mo> <mml:mn>3</mml:mn> </mml:math> .\",\"PeriodicalId\":53211,\"journal\":{\"name\":\"Journal of Physics Complexity\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072x/acf90b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/acf90b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

最近的一项研究(Chiyomaru and Takemoto 2022)。Rev. E 106 014301)考虑了进行对抗性攻击以扭曲网络中的选民模型动态。该方法通过一个小的扰动ε,对个体的交互模式进行干预,使个体处于目标意见状态。在这项研究中,我们研究了有限大小n的随机网络中对选民动态的对抗性攻击。在平均场近似中分析了达到目标吸收态的出口概率P +1和达到一致的平均时间τ n。给定ε >0时,退出概率P +1随着n的增大渐近收敛于1。对于具有较大有限n的齐次网络,达到一致尺度的平均时间τ n为(ln λ n) / λ。相比之下,对于具有较大有限n的异构网络,它的尺度为(ln (λ μ 1 2n / μ 2)) / λ,其中µ1和µ2分别代表度分布的第一和第二矩。此外,我们观察到τ n从线性尺度到对数尺度的交叉现象,并发现n co ~ ε−1 / α以上所有节点的状态在对数时间内成为目标状态。其中,对于齐次网络,α = 1;对于度指数为2 <的无标度网络,α = (γ−1)/ 2;γ& lt;3所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crossover phenomenon in adversarial attacks on voter model
Abstract A recent study (Chiyomaru and Takemoto 2022 Phys. Rev. E 106 014301) considered adversarial attacks conducted to distort voter model dynamics in networks. This method intervenes in the interaction patterns of individuals and induces them to be in a target opinion state through a small perturbation ε . In this study, we investigate adversarial attacks on voter dynamics in random networks of finite size n . The exit probability P +1 to reach the target absorbing state and the mean time τ n to reach consensus are analyzed in the mean-field approximation. Given ε > 0, the exit probability P +1 converges asymptotically to unity as n increases. The mean time τ n to reach consensus scales as ( ln ϵ n ) / ϵ for homogeneous networks with a large finite n . By contrast, it scales as ( ln ( ϵ μ 1 2 n / μ 2 ) ) / ϵ for heterogeneous networks with a large finite n , where µ 1 and µ 2 represent the first and second moments of the degree distribution, respectively. Moreover, we observe the crossover phenomenon of τ n from a linear scale to a logarithmic scale and find n c o ϵ 1 / α above which the state of all nodes becomes the target state in logarithmic time. Here, α = 1 for homogeneous networks and α = ( γ 1 ) / 2 for scale-free networks with a degree exponent 2 < γ < 3 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
期刊最新文献
Persistent Mayer Dirac. Fitness-based growth of directed networks with hierarchy The ultrametric backbone is the union of all minimum spanning forests. Exploring the space of graphs with fixed discrete curvatures Augmentations of Forman’s Ricci curvature and their applications in community detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1