求解线性系统和最小二乘问题的LSMR新形式

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY International Journal of Computing Science and Mathematics Pub Date : 2023-01-01 DOI:10.1504/ijcsm.2023.134561
Maryam Mojarrab, Afsaneh Hasanpour, Somayyeh Ghadamyari
{"title":"求解线性系统和最小二乘问题的LSMR新形式","authors":"Maryam Mojarrab, Afsaneh Hasanpour, Somayyeh Ghadamyari","doi":"10.1504/ijcsm.2023.134561","DOIUrl":null,"url":null,"abstract":"The least squares minimal residual (LSMR) method of Fong and Saunders (2011) is an algorithm for solving linear systems Ax = b and least-squares problems min∥Ax - b∥2 that is analytically equivalent to the MINRES method applied to a normal equation ATAx = AT b so that the quantities ∥ATrk∥2 are minimised (where rk = b - Axk is the residual for current iterate xk). This method is based on the Golub-Kahan bidiagonalisation 1 process, which generates orthonormal Krylov basis vectors. Here, the Golub-Kahan bidiagonalisation 2 process is implemented in the LSMR algorithm. This substitution makes the algorithm simpler than the standard algorithm. Also, numerical results show the new form to be competitive.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new form of LSMR for solving linear systems and least-squares problems\",\"authors\":\"Maryam Mojarrab, Afsaneh Hasanpour, Somayyeh Ghadamyari\",\"doi\":\"10.1504/ijcsm.2023.134561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The least squares minimal residual (LSMR) method of Fong and Saunders (2011) is an algorithm for solving linear systems Ax = b and least-squares problems min∥Ax - b∥2 that is analytically equivalent to the MINRES method applied to a normal equation ATAx = AT b so that the quantities ∥ATrk∥2 are minimised (where rk = b - Axk is the residual for current iterate xk). This method is based on the Golub-Kahan bidiagonalisation 1 process, which generates orthonormal Krylov basis vectors. Here, the Golub-Kahan bidiagonalisation 2 process is implemented in the LSMR algorithm. This substitution makes the algorithm simpler than the standard algorithm. Also, numerical results show the new form to be competitive.\",\"PeriodicalId\":45487,\"journal\":{\"name\":\"International Journal of Computing Science and Mathematics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcsm.2023.134561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2023.134561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Fong和Saunders(2011)的最小二乘最小残差(LSMR)方法是一种求解线性系统Ax = b和最小二乘问题min∥Ax - b∥2的算法,其解析等效于应用于正常方程ATAx = AT b的MINRES方法,从而使数量∥ATrk∥2最小化(其中rk = b - Axk是当前迭代xk的残差)。该方法基于Golub-Kahan双对角化1过程,该过程生成标准正交的Krylov基向量。这里,在LSMR算法中实现了Golub-Kahan双对角化2过程。这种替换使算法比标准算法更简单。数值结果表明,新形式具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new form of LSMR for solving linear systems and least-squares problems
The least squares minimal residual (LSMR) method of Fong and Saunders (2011) is an algorithm for solving linear systems Ax = b and least-squares problems min∥Ax - b∥2 that is analytically equivalent to the MINRES method applied to a normal equation ATAx = AT b so that the quantities ∥ATrk∥2 are minimised (where rk = b - Axk is the residual for current iterate xk). This method is based on the Golub-Kahan bidiagonalisation 1 process, which generates orthonormal Krylov basis vectors. Here, the Golub-Kahan bidiagonalisation 2 process is implemented in the LSMR algorithm. This substitution makes the algorithm simpler than the standard algorithm. Also, numerical results show the new form to be competitive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
37
期刊最新文献
Application of hybrid genetic algorithm based on travelling salesman problem in rural tourism route planning Non-destructive Diagnosis of Knee Osteoarthritis Based on Sparse Coding of MRI Hierarchical neural network detection model based on deep context and attention mechanism Particle resolved direct numerical simulation of heat transfer in gas-solid flows Research on bilingual text similarity detection and analysis based on improved fragment merging algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1