基于强度划分的新型聚类算法和多维LSTM循环神经网络的高效乳腺癌检测

Gul Shaira Banu Jahangeer, T. Dhiliphan Rajkumar
{"title":"基于强度划分的新型聚类算法和多维LSTM循环神经网络的高效乳腺癌检测","authors":"Gul Shaira Banu Jahangeer, T. Dhiliphan Rajkumar","doi":"10.1504/ijmei.2023.134536","DOIUrl":null,"url":null,"abstract":"Recently, early detection of breast cancer is significant to reduce the mortality rate, especially in women. Hence, the study aims to classify breast cancer from digital database for screening mammography (DDSM) dataset using partition and intensity based segmentation algorithm and modified convolutional neural network-long short-term memory (CNN-LSTM) classifier. Initially, pre-processing is performed using Gaussian filtering by taking the mammogram image. Then, it is segmented using a novel intensity partitioning-based clustering algorithm (IPCA). Further, feature extraction is performed and finally, classification is implemented using a novel multi-dimensional LSTM cyclic neural network (MLSTM-CNN). The analysis is performed to evaluate the efficiency of the proposed system and the outcomes explored its efficacy in breast cancer detection.","PeriodicalId":39126,"journal":{"name":"International Journal of Medical Engineering and Informatics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient breast cancer detection using novel intensity partitioning-based clustering algorithm and multi-dimensional LSTM cyclic neural network\",\"authors\":\"Gul Shaira Banu Jahangeer, T. Dhiliphan Rajkumar\",\"doi\":\"10.1504/ijmei.2023.134536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, early detection of breast cancer is significant to reduce the mortality rate, especially in women. Hence, the study aims to classify breast cancer from digital database for screening mammography (DDSM) dataset using partition and intensity based segmentation algorithm and modified convolutional neural network-long short-term memory (CNN-LSTM) classifier. Initially, pre-processing is performed using Gaussian filtering by taking the mammogram image. Then, it is segmented using a novel intensity partitioning-based clustering algorithm (IPCA). Further, feature extraction is performed and finally, classification is implemented using a novel multi-dimensional LSTM cyclic neural network (MLSTM-CNN). The analysis is performed to evaluate the efficiency of the proposed system and the outcomes explored its efficacy in breast cancer detection.\",\"PeriodicalId\":39126,\"journal\":{\"name\":\"International Journal of Medical Engineering and Informatics\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmei.2023.134536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmei.2023.134536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

最近,早期发现乳腺癌对于降低死亡率,特别是妇女死亡率具有重要意义。因此,本研究旨在利用基于分割和强度的分割算法和改进的卷积神经网络-长短期记忆(CNN-LSTM)分类器,从数字乳腺筛查数据库(DDSM)数据集中对乳腺癌进行分类。首先,采用高斯滤波对乳房x光片图像进行预处理。然后,使用一种新的基于强度划分的聚类算法(IPCA)对其进行分割。然后,进行特征提取,最后,使用一种新的多维LSTM循环神经网络(MLSTM-CNN)实现分类。进行分析以评估所提出的系统的效率,并探讨其在乳腺癌检测中的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient breast cancer detection using novel intensity partitioning-based clustering algorithm and multi-dimensional LSTM cyclic neural network
Recently, early detection of breast cancer is significant to reduce the mortality rate, especially in women. Hence, the study aims to classify breast cancer from digital database for screening mammography (DDSM) dataset using partition and intensity based segmentation algorithm and modified convolutional neural network-long short-term memory (CNN-LSTM) classifier. Initially, pre-processing is performed using Gaussian filtering by taking the mammogram image. Then, it is segmented using a novel intensity partitioning-based clustering algorithm (IPCA). Further, feature extraction is performed and finally, classification is implemented using a novel multi-dimensional LSTM cyclic neural network (MLSTM-CNN). The analysis is performed to evaluate the efficiency of the proposed system and the outcomes explored its efficacy in breast cancer detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
110
期刊介绍: IJMEI promotes an understanding of the structural/functional aspects of disease mechanisms and the application of technology towards the treatment/management of such diseases. It seeks to promote interdisciplinary collaboration between those interested in the theoretical and clinical aspects of medicine and to foster the application of computers and mathematics to problems arising from medical sciences. IJMEI includes authoritative review papers, the reporting of original research, and evaluation reports of new/existing techniques and devices. Each issue also contains a comprehensive information service. Topics covered include Hospital information/medical record systems, data protection/privacy Disease modelling/analysis, evidence-based clinical modelling/studies Computer-based patient/disease management systems Clinical trials/studies, outcome-based studies/analysis Electronic patient monitoring systems Nanotechnology in medicine, medical applications Tissue engineering, artificial organs, biomaterials design Healthcare standards, service standardisation Controlled medical terminology/vocabularies Nursing informatics, systems integration Healthcare/hospital management, economics Medical technology, intelligent instrumentation, telemedicine Medical/molecular imaging, disease management Bioinformatics, human genome studies/analysis Drug design.
期刊最新文献
ПЕРЕБІГ ВАГІТНОСТІ, ПОЛОГІВ, МОРФОЛОГІЧНІ ТА ІМУНОГІСТОХІМІЧНІ ОСОБЛИВОСТІ ПЛАЦЕНТИ У ВАГІТНИХ З КОРОНАВІРУСНОЮ ХВОРОБОЮ COVID-19 АВТОПСІЙНЕ ДОСЛІДЖЕННЯ: 125–РІЧНИЙ ДОСВІД РОБОТИ КАФЕДРИ ПАТОЛОГІЧНОЇ АНАТОМІЇ ЛЬВІВСЬКОГО НАЦІОНАЛЬНОГО МЕДИЧНОГО УНІВЕРСИТЕТУ ІМЕНІ ДАНИЛА ГАЛИЦЬКОГО ЗМІНИ СЛИЗОВОГО БАР'ЄРУ У ПАЦІЄНТІВ ІЗ СИНДРОМОМ ПОДРАЗНЕНОГО КИШЕЧНИКА ПАТОМОРФОЛОГІЧНА ХАРАКТЕРИСТИКА КРИПТОКОКОЗУ ЛЕГЕНЬ ТА НИРОК ПРИ ВІЛ-ІНФЕКЦІЇ/СНІД ДИСТАНЦІЙНА ОСВІТА НА ПІСЛЯДИПЛОМНОМУ ЕТАПІ НАВЧАННЯ ЛІКАРІВ: ПРОБЛЕМНІ ПИТАННЯ ТА ЇХ ВИРІШЕННЯ НА СУЧАСНОМУ ЕТАПІ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1