{"title":"一种新型超低温自串级制冷循环的数学建模和性能分析","authors":"Ibrahim Karacayli, Lutfiye Altay, Arif Hepbasli","doi":"10.1504/ijex.2023.134611","DOIUrl":null,"url":null,"abstract":"The main objective of this study is to assess both energetically and exergetically the performance of a novel auto-cascade refrigeration (NACR) cycle enhanced by an internal heat exchanger using R290/R170. In contrast to the ACR cycle with a -60°C evaporation temperature, the NACR cycle displays a COP increase of 140.78% and a 148.67% improvement in exergy efficiency. Additionally, there is a notable decrease of 13.77% in compressor discharge temperature. For an evaporation temperature of -55°C, the NACR cycle achieves a COP of 0.403 and an exergy efficiency of 14.61%, with the compressor discharge temperature registering at 126.60°C.","PeriodicalId":50325,"journal":{"name":"International Journal of Exergy","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modelling and performance analysis of a novel auto-cascade refrigeration cycle for ultra-low temperature applications\",\"authors\":\"Ibrahim Karacayli, Lutfiye Altay, Arif Hepbasli\",\"doi\":\"10.1504/ijex.2023.134611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this study is to assess both energetically and exergetically the performance of a novel auto-cascade refrigeration (NACR) cycle enhanced by an internal heat exchanger using R290/R170. In contrast to the ACR cycle with a -60°C evaporation temperature, the NACR cycle displays a COP increase of 140.78% and a 148.67% improvement in exergy efficiency. Additionally, there is a notable decrease of 13.77% in compressor discharge temperature. For an evaporation temperature of -55°C, the NACR cycle achieves a COP of 0.403 and an exergy efficiency of 14.61%, with the compressor discharge temperature registering at 126.60°C.\",\"PeriodicalId\":50325,\"journal\":{\"name\":\"International Journal of Exergy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Exergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijex.2023.134611\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Exergy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijex.2023.134611","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Mathematical modelling and performance analysis of a novel auto-cascade refrigeration cycle for ultra-low temperature applications
The main objective of this study is to assess both energetically and exergetically the performance of a novel auto-cascade refrigeration (NACR) cycle enhanced by an internal heat exchanger using R290/R170. In contrast to the ACR cycle with a -60°C evaporation temperature, the NACR cycle displays a COP increase of 140.78% and a 148.67% improvement in exergy efficiency. Additionally, there is a notable decrease of 13.77% in compressor discharge temperature. For an evaporation temperature of -55°C, the NACR cycle achieves a COP of 0.403 and an exergy efficiency of 14.61%, with the compressor discharge temperature registering at 126.60°C.
期刊介绍:
IJEX is dedicated to providing an interdisciplinary platform for information and ideas in the field of exergy and thermodynamic optimisation. It publishes a wide range of original, high-quality research papers, and ancillary features, spanning activities from fundamental research to industrial applications. IJEX covers aspects of exergy analysis of engineering and non-engineering systems and processes in a large variety of disciplines, ranging from mechanical engineering to physics and chemical engineering to industrial ecology.
Topics covered include:
-Thermodynamic systems
-Energy-related applications
-Process optimisation
-Energy systems, policies, planning
-Exergy/environment modelling
-Exergetic life cycle assessment
-Industrial ecology
-Sectoral exergy utilisation
-Waste exergy emissions
-Second-law efficiency
-Thermo- and exergo-economics
-Exergy in sustainable development
-Criticisms of and problems with use of exergy
-Entropy generation minimisation
-Constructal theory and design