{"title":"减少基于计数器的行锤缓解措施的硅面积开销","authors":"Loïc France;Florent Bruguier;David Novo;Maria Mushtaq;Pascal Benoit","doi":"10.1109/LCA.2023.3328824","DOIUrl":null,"url":null,"abstract":"Modern computer memories have shown to have reliability issues. The main memory is the target of a security threat called Rowhammer, which causes bit flips in adjacent victim cells of aggressor rows. Numerous countermeasures have been proposed, some of the most efficient ones relying on row access counters, with different techniques to reduce the impact on performance, energy consumption and silicon area. In these proposals, the number of counters is calculated using the maximum number of row activations that can be issued to the protected bank. As reducing the number of counters results in lower silicon area and energy overheads, this can have a direct impact on the production and usage costs. In this work, we demonstrate that two of the most efficient countermeasures can have their silicon area overhead reduced by approximately 50% without impacting the protection level by changing their counting granularity.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 1","pages":"61-64"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing the Silicon Area Overhead of Counter-Based Rowhammer Mitigations\",\"authors\":\"Loïc France;Florent Bruguier;David Novo;Maria Mushtaq;Pascal Benoit\",\"doi\":\"10.1109/LCA.2023.3328824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern computer memories have shown to have reliability issues. The main memory is the target of a security threat called Rowhammer, which causes bit flips in adjacent victim cells of aggressor rows. Numerous countermeasures have been proposed, some of the most efficient ones relying on row access counters, with different techniques to reduce the impact on performance, energy consumption and silicon area. In these proposals, the number of counters is calculated using the maximum number of row activations that can be issued to the protected bank. As reducing the number of counters results in lower silicon area and energy overheads, this can have a direct impact on the production and usage costs. In this work, we demonstrate that two of the most efficient countermeasures can have their silicon area overhead reduced by approximately 50% without impacting the protection level by changing their counting granularity.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"23 1\",\"pages\":\"61-64\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10302356/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10302356/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Reducing the Silicon Area Overhead of Counter-Based Rowhammer Mitigations
Modern computer memories have shown to have reliability issues. The main memory is the target of a security threat called Rowhammer, which causes bit flips in adjacent victim cells of aggressor rows. Numerous countermeasures have been proposed, some of the most efficient ones relying on row access counters, with different techniques to reduce the impact on performance, energy consumption and silicon area. In these proposals, the number of counters is calculated using the maximum number of row activations that can be issued to the protected bank. As reducing the number of counters results in lower silicon area and energy overheads, this can have a direct impact on the production and usage costs. In this work, we demonstrate that two of the most efficient countermeasures can have their silicon area overhead reduced by approximately 50% without impacting the protection level by changing their counting granularity.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.