CNN在多fpga集群上的并行实现

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IEICE Transactions on Information and Systems Pub Date : 2023-07-01 DOI:10.1587/transinf.2022edp7175
Yasuyu FUKUSHIMA, Kensuke IIZUKA, Hideharu AMANO
{"title":"CNN在多fpga集群上的并行实现","authors":"Yasuyu FUKUSHIMA, Kensuke IIZUKA, Hideharu AMANO","doi":"10.1587/transinf.2022edp7175","DOIUrl":null,"url":null,"abstract":"We developed a PYNQ cluster that consists of economical Zynq boards, called M-KUBOS, that are interconnected through low-cost high-performance GTH serial links. For the software environment, we employed the PYNQ open-source software platform. The PYNQ cluster is anticipated to be a multi-access edge computing (MEC) server for 5G mobile networks. We implemented the ResNet-50 inference accelerator on the PYNQ cluster for image recognition of MEC applications. By estimating the execution time of each ResNet-50 layer, layers of ResNet-50 were divided into multiple boards so that the execution time of each board would be as equal as possible for efficient pipeline processing. Owing to the PYNQ cluster in which FPGAs were directly connected by high-speed serial links, stream processing without network bottlenecks and pipeline processing between boards were readily realized. The implementation on 4 boards achieved 292 GOPS performance, 75.1 FPS throughput, and 7.81 GOPS/W power efficiency. It achieved 17 times faster speed and 130 times more power efficiency compared to the implementation on the CPU, and 5.8 times more power efficiency compared to the implementation on the GPU.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":"130 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Implementation of CNN on Multi-FPGA Cluster\",\"authors\":\"Yasuyu FUKUSHIMA, Kensuke IIZUKA, Hideharu AMANO\",\"doi\":\"10.1587/transinf.2022edp7175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a PYNQ cluster that consists of economical Zynq boards, called M-KUBOS, that are interconnected through low-cost high-performance GTH serial links. For the software environment, we employed the PYNQ open-source software platform. The PYNQ cluster is anticipated to be a multi-access edge computing (MEC) server for 5G mobile networks. We implemented the ResNet-50 inference accelerator on the PYNQ cluster for image recognition of MEC applications. By estimating the execution time of each ResNet-50 layer, layers of ResNet-50 were divided into multiple boards so that the execution time of each board would be as equal as possible for efficient pipeline processing. Owing to the PYNQ cluster in which FPGAs were directly connected by high-speed serial links, stream processing without network bottlenecks and pipeline processing between boards were readily realized. The implementation on 4 boards achieved 292 GOPS performance, 75.1 FPS throughput, and 7.81 GOPS/W power efficiency. It achieved 17 times faster speed and 130 times more power efficiency compared to the implementation on the CPU, and 5.8 times more power efficiency compared to the implementation on the GPU.\",\"PeriodicalId\":55002,\"journal\":{\"name\":\"IEICE Transactions on Information and Systems\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Transactions on Information and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transinf.2022edp7175\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Information and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transinf.2022edp7175","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个PYNQ集群,它由经济型Zynq板组成,称为M-KUBOS,它们通过低成本的高性能GTH串行链路相互连接。对于软件环境,我们采用了PYNQ开源软件平台。PYNQ集群预计将成为5G移动网络的多接入边缘计算(MEC)服务器。我们在PYNQ集群上实现了ResNet-50推理加速器,用于MEC应用的图像识别。通过估计每个ResNet-50层的执行时间,将ResNet-50层划分为多个板,使每个板的执行时间尽可能相等,从而实现高效的流水线处理。在PYNQ集群中,fpga通过高速串行链路直接连接,可以实现无网络瓶颈的流处理和板间的流水线处理。在4块板上的实现实现了292 GOPS性能、75.1 FPS吞吐量和7.81 GOPS/W的功耗效率。与CPU上的实现相比,它实现了17倍的速度和130倍的功率效率,与GPU上的实现相比,它实现了5.8倍的功率效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Implementation of CNN on Multi-FPGA Cluster
We developed a PYNQ cluster that consists of economical Zynq boards, called M-KUBOS, that are interconnected through low-cost high-performance GTH serial links. For the software environment, we employed the PYNQ open-source software platform. The PYNQ cluster is anticipated to be a multi-access edge computing (MEC) server for 5G mobile networks. We implemented the ResNet-50 inference accelerator on the PYNQ cluster for image recognition of MEC applications. By estimating the execution time of each ResNet-50 layer, layers of ResNet-50 were divided into multiple boards so that the execution time of each board would be as equal as possible for efficient pipeline processing. Owing to the PYNQ cluster in which FPGAs were directly connected by high-speed serial links, stream processing without network bottlenecks and pipeline processing between boards were readily realized. The implementation on 4 boards achieved 292 GOPS performance, 75.1 FPS throughput, and 7.81 GOPS/W power efficiency. It achieved 17 times faster speed and 130 times more power efficiency compared to the implementation on the CPU, and 5.8 times more power efficiency compared to the implementation on the GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Transactions on Information and Systems
IEICE Transactions on Information and Systems 工程技术-计算机:软件工程
CiteScore
1.80
自引率
0.00%
发文量
238
审稿时长
5.0 months
期刊介绍: Published by The Institute of Electronics, Information and Communication Engineers Subject Area: Mathematics Physics Biology, Life Sciences and Basic Medicine General Medicine, Social Medicine, and Nursing Sciences Clinical Medicine Engineering in General Nanosciences and Materials Sciences Mechanical Engineering Electrical and Electronic Engineering Information Sciences Economics, Business & Management Psychology, Education.
期刊最新文献
Frameworks for Privacy-Preserving Federated Learning Lightweight and Fast Low-Light Image Enhancement Method Based on PoolFormer An Evaluation of the Impact of Distance on Perceptual Quality of Textured 3D Meshes Efficient Action Spotting Using Saliency Feature Weighting Testing and Delay-Monitoring for the High Reliability of Memory-Based Programmable Logic Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1