{"title":"溶胶-凝胶免疫亲和层析法分离食品和环境样品中的脱氧雪腐菌烯醇和玉米赤霉烯酮","authors":"Ban Khalil Ail","doi":"10.1080/03067319.2023.2269856","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe presence of mycotoxins in food is a significant concern due to their potential health risks. It is estimated that around 25% of global food production is contaminated with mycotoxins, which can be produced by certain types of fungi that infect crops during different stages of growth. As a result, it is crucial to monitor mycotoxins in food sources and develop effective methods for removal or reduction. One technique commonly used for detecting and separating mycotoxins is immunoaffinity chromatography (IAC). Traditionally, IAC uses antibodies covalently bonded to a solid support material, but this can lead to conformational changes and reduced affinity towards the analytes. To address these limitations, researchers have explored alternative methods for immobilising biomolecules, such as the sol-gel method, which involves encapsulating biomolecules within the pores of a glass matrix. This approach makes it easier to reuse the immunoaffinity columns and reduces the need for bacteriostatic agents, making the process more cost-effective and efficient. The results showed that sol-gel IAS was able to effectively separate these toxins from complex matrices, demonstrating its potential for widespread application in food safety monitoring. Additionally, the ability of sol-gel IAS to remove mycotoxins from environmental samples tested was highlighting its versatility and potential for broader applications beyond food safety. Finally, they demonstrated the compatibility of sol-gel IAS with high-performance liquid chromatography, enabling online coupling of the two techniques for improved efficiency and accuracy. The findings of this study suggest that sol-gel IAC is a promising method for the detection and separation of mycotoxins in various matrices, including food, environmental samples, and other biological fluids. Its advantages over traditional IAC methods make it an attractive option for large-scale analysis and monitoring of mycotoxins in diverse settings.KEYWORDS: Sol-gel immunoaffinity chromatographydeoxynivalenolzearalenonefood and environmental samples Disclosure statementNo potential conflict of interest was reported by the author.","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"36 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sol-gel immunoaffinity chromatography for isolation of deoxynivalenol and zearalenone from food and environmental samples\",\"authors\":\"Ban Khalil Ail\",\"doi\":\"10.1080/03067319.2023.2269856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThe presence of mycotoxins in food is a significant concern due to their potential health risks. It is estimated that around 25% of global food production is contaminated with mycotoxins, which can be produced by certain types of fungi that infect crops during different stages of growth. As a result, it is crucial to monitor mycotoxins in food sources and develop effective methods for removal or reduction. One technique commonly used for detecting and separating mycotoxins is immunoaffinity chromatography (IAC). Traditionally, IAC uses antibodies covalently bonded to a solid support material, but this can lead to conformational changes and reduced affinity towards the analytes. To address these limitations, researchers have explored alternative methods for immobilising biomolecules, such as the sol-gel method, which involves encapsulating biomolecules within the pores of a glass matrix. This approach makes it easier to reuse the immunoaffinity columns and reduces the need for bacteriostatic agents, making the process more cost-effective and efficient. The results showed that sol-gel IAS was able to effectively separate these toxins from complex matrices, demonstrating its potential for widespread application in food safety monitoring. Additionally, the ability of sol-gel IAS to remove mycotoxins from environmental samples tested was highlighting its versatility and potential for broader applications beyond food safety. Finally, they demonstrated the compatibility of sol-gel IAS with high-performance liquid chromatography, enabling online coupling of the two techniques for improved efficiency and accuracy. The findings of this study suggest that sol-gel IAC is a promising method for the detection and separation of mycotoxins in various matrices, including food, environmental samples, and other biological fluids. Its advantages over traditional IAC methods make it an attractive option for large-scale analysis and monitoring of mycotoxins in diverse settings.KEYWORDS: Sol-gel immunoaffinity chromatographydeoxynivalenolzearalenonefood and environmental samples Disclosure statementNo potential conflict of interest was reported by the author.\",\"PeriodicalId\":13973,\"journal\":{\"name\":\"International Journal of Environmental Analytical Chemistry\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Analytical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03067319.2023.2269856\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03067319.2023.2269856","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Sol-gel immunoaffinity chromatography for isolation of deoxynivalenol and zearalenone from food and environmental samples
ABSTRACTThe presence of mycotoxins in food is a significant concern due to their potential health risks. It is estimated that around 25% of global food production is contaminated with mycotoxins, which can be produced by certain types of fungi that infect crops during different stages of growth. As a result, it is crucial to monitor mycotoxins in food sources and develop effective methods for removal or reduction. One technique commonly used for detecting and separating mycotoxins is immunoaffinity chromatography (IAC). Traditionally, IAC uses antibodies covalently bonded to a solid support material, but this can lead to conformational changes and reduced affinity towards the analytes. To address these limitations, researchers have explored alternative methods for immobilising biomolecules, such as the sol-gel method, which involves encapsulating biomolecules within the pores of a glass matrix. This approach makes it easier to reuse the immunoaffinity columns and reduces the need for bacteriostatic agents, making the process more cost-effective and efficient. The results showed that sol-gel IAS was able to effectively separate these toxins from complex matrices, demonstrating its potential for widespread application in food safety monitoring. Additionally, the ability of sol-gel IAS to remove mycotoxins from environmental samples tested was highlighting its versatility and potential for broader applications beyond food safety. Finally, they demonstrated the compatibility of sol-gel IAS with high-performance liquid chromatography, enabling online coupling of the two techniques for improved efficiency and accuracy. The findings of this study suggest that sol-gel IAC is a promising method for the detection and separation of mycotoxins in various matrices, including food, environmental samples, and other biological fluids. Its advantages over traditional IAC methods make it an attractive option for large-scale analysis and monitoring of mycotoxins in diverse settings.KEYWORDS: Sol-gel immunoaffinity chromatographydeoxynivalenolzearalenonefood and environmental samples Disclosure statementNo potential conflict of interest was reported by the author.
期刊介绍:
International Journal of Environmental Analytical Chemistry comprises original research on all aspects of analytical work related to environmental problems. This includes analysis of organic, inorganic and radioactive pollutants in air, water, sediments and biota; and determination of harmful substances, including analytical methods for the investigation of chemical or metabolic breakdown patterns in the environment and in biological samples.
The journal also covers the development of new analytical methods or improvement of existing ones useful for the control and investigation of pollutants or trace amounts of naturally occurring active chemicals in all environmental compartments. Development, modification and automation of instruments and techniques with potential in environment sciences are also part of the journal.
Case studies are also considered, particularly for areas where information is scarce or lacking, providing that reported data is significant and representative, either spatially or temporally, and quality assured. Owing to the interdisciplinary nature of this journal, it will also include topics of interest to researchers in the fields of medical science (health sciences), toxicology, forensic sciences, oceanography, food sciences, biological sciences and other fields that, in one way or another, contribute to the knowledge of our environment and have to make use of analytical chemistry for this purpose.