用于高效中性束注入器设计和托卡马克操作的束传输(BTR)软件

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING IET Software Pub Date : 2023-10-24 DOI:10.3390/software2040022
Eugenia Dlougach, Margarita Kichik
{"title":"用于高效中性束注入器设计和托卡马克操作的束传输(BTR)软件","authors":"Eugenia Dlougach, Margarita Kichik","doi":"10.3390/software2040022","DOIUrl":null,"url":null,"abstract":"BTR code (originally—“Beam Transmission and Re-ionization”, 1995) is used for Neutral Beam Injection (NBI) design; it is also applied to the injector system of ITER. In 2008, the BTR model was extended to include the beam interaction with plasmas and direct beam losses in tokamak. For many years, BTR has been widely used for various NBI designs for efficient heating and current drive in nuclear fusion devices for plasma scenario control and diagnostics. BTR analysis is especially important for ‘beam-driven’ fusion devices, such as fusion neutron source (FNS) tokamaks, since their operation depends on a high NBI input in non-inductive current drive and fusion yield. BTR calculates detailed power deposition maps and particle losses with an account of ionized beam fractions and background electromagnetic fields; these results are used for the overall NBI performance analysis. BTR code is open for public usage; it is fully interactive and supplied with an intuitive graphical user interface (GUI). The input configuration is flexibly adapted to any specific NBI geometry. High running speed and full control over the running options allow the user to perform multiple parametric runs on the fly. The paper describes the detailed physics of BTR, numerical methods, graphical user interface, and examples of BTR application. The code is still in evolution; basic support is available to all BTR users.","PeriodicalId":50378,"journal":{"name":"IET Software","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beam Transmission (BTR) Software for Efficient Neutral Beam Injector Design and Tokamak Operation\",\"authors\":\"Eugenia Dlougach, Margarita Kichik\",\"doi\":\"10.3390/software2040022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BTR code (originally—“Beam Transmission and Re-ionization”, 1995) is used for Neutral Beam Injection (NBI) design; it is also applied to the injector system of ITER. In 2008, the BTR model was extended to include the beam interaction with plasmas and direct beam losses in tokamak. For many years, BTR has been widely used for various NBI designs for efficient heating and current drive in nuclear fusion devices for plasma scenario control and diagnostics. BTR analysis is especially important for ‘beam-driven’ fusion devices, such as fusion neutron source (FNS) tokamaks, since their operation depends on a high NBI input in non-inductive current drive and fusion yield. BTR calculates detailed power deposition maps and particle losses with an account of ionized beam fractions and background electromagnetic fields; these results are used for the overall NBI performance analysis. BTR code is open for public usage; it is fully interactive and supplied with an intuitive graphical user interface (GUI). The input configuration is flexibly adapted to any specific NBI geometry. High running speed and full control over the running options allow the user to perform multiple parametric runs on the fly. The paper describes the detailed physics of BTR, numerical methods, graphical user interface, and examples of BTR application. The code is still in evolution; basic support is available to all BTR users.\",\"PeriodicalId\":50378,\"journal\":{\"name\":\"IET Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/software2040022\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/software2040022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

BTR代码(原-“光束传输和再电离”,1995年)用于中性束注入(NBI)设计;该方法也适用于ITER的注入系统。2008年,将BTR模型扩展到包括托卡马克中等离子体与束流相互作用和直接束流损失。多年来,BTR已广泛应用于各种NBI设计,用于等离子体场景控制和诊断核聚变装置的高效加热和电流驱动。BTR分析对于“束驱动”聚变装置尤其重要,例如聚变中子源(FNS)托卡马克,因为它们的运行依赖于非感应电流驱动和聚变产率的高NBI输入。BTR计算详细的功率沉积图和粒子损失与电离束分数和背景电磁场的说明;这些结果用于总体NBI性能分析。BTR代码开放给公众使用;它是完全交互式的,并提供直观的图形用户界面(GUI)。输入配置可以灵活地适应任何特定的NBI几何形状。高运行速度和运行选项的完全控制允许用户在飞行中执行多个参数运行。本文详细介绍了BTR的物理特性、数值方法、图形用户界面以及BTR的应用实例。代码仍在进化中;所有BTR用户都可以获得基本支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beam Transmission (BTR) Software for Efficient Neutral Beam Injector Design and Tokamak Operation
BTR code (originally—“Beam Transmission and Re-ionization”, 1995) is used for Neutral Beam Injection (NBI) design; it is also applied to the injector system of ITER. In 2008, the BTR model was extended to include the beam interaction with plasmas and direct beam losses in tokamak. For many years, BTR has been widely used for various NBI designs for efficient heating and current drive in nuclear fusion devices for plasma scenario control and diagnostics. BTR analysis is especially important for ‘beam-driven’ fusion devices, such as fusion neutron source (FNS) tokamaks, since their operation depends on a high NBI input in non-inductive current drive and fusion yield. BTR calculates detailed power deposition maps and particle losses with an account of ionized beam fractions and background electromagnetic fields; these results are used for the overall NBI performance analysis. BTR code is open for public usage; it is fully interactive and supplied with an intuitive graphical user interface (GUI). The input configuration is flexibly adapted to any specific NBI geometry. High running speed and full control over the running options allow the user to perform multiple parametric runs on the fly. The paper describes the detailed physics of BTR, numerical methods, graphical user interface, and examples of BTR application. The code is still in evolution; basic support is available to all BTR users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Software
IET Software 工程技术-计算机:软件工程
CiteScore
4.20
自引率
0.00%
发文量
27
审稿时长
9 months
期刊介绍: IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application. Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome: Software and systems requirements engineering Formal methods, design methods, practice and experience Software architecture, aspect and object orientation, reuse and re-engineering Testing, verification and validation techniques Software dependability and measurement Human systems engineering and human-computer interaction Knowledge engineering; expert and knowledge-based systems, intelligent agents Information systems engineering Application of software engineering in industry and commerce Software engineering technology transfer Management of software development Theoretical aspects of software development Machine learning Big data and big code Cloud computing Current Special Issue. Call for papers: Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf
期刊最新文献
Breaking the Blockchain Trilemma: A Comprehensive Consensus Mechanism for Ensuring Security, Scalability, and Decentralization IC-GraF: An Improved Clustering with Graph-Embedding-Based Features for Software Defect Prediction IAPCP: An Effective Cross-Project Defect Prediction Model via Intra-Domain Alignment and Programming-Based Distribution Adaptation Understanding Work Rhythms in Software Development and Their Effects on Technical Performance Research and Application of Firewall Log and Intrusion Detection Log Data Visualization System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1