Nico Neumann, Catherine E. Tucker, Kumar Subramanyam, John Marshall
{"title":"第一方或第三方受众数据是否更有效地找到“正确的”客户?IT决策者的案例","authors":"Nico Neumann, Catherine E. Tucker, Kumar Subramanyam, John Marshall","doi":"10.1007/s11129-023-09268-7","DOIUrl":null,"url":null,"abstract":"Abstract Often marketers face the challenge of how to communicate best with the customers who have the right responsibilities, influence or purchasing power, especially in business-to-business (B2B) settings. For example, B2B marketers selling software and IT need to identify IT decision-makers (ITDMs) within organizations. The modern digital environment in theory allows marketers to target individuals in organizations through specifically designed third-party audience segments based on deterministic prospect lists or probabilistic inference. However, in this paper we show that in our context, such ‘off-the-shelf’ segments perform no better at reaching the right person than random prospecting. We present evidence that even deterministic attribute information is flawed for ITDM identification, and that the poor campaign results can be partly linked to incorrect assignment of established prospect profiles to online identifiers. We then use access to our publisher network data to investigate what would happen if the advertiser had used first-party data that are less susceptible to the identified issues. We demonstrate that first-party demographics or contextual information allows advertisers and publishers to outperform both third-party ITDM audience segments and random prospecting. Our findings have implications for understanding the shift in digital advertising away from third-party cookie tracking, and how to execute digital marketing in the context of broad privacy regulation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is first- or third-party audience data more effective for reaching the ‘right’ customers? The case of IT decision-makers\",\"authors\":\"Nico Neumann, Catherine E. Tucker, Kumar Subramanyam, John Marshall\",\"doi\":\"10.1007/s11129-023-09268-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Often marketers face the challenge of how to communicate best with the customers who have the right responsibilities, influence or purchasing power, especially in business-to-business (B2B) settings. For example, B2B marketers selling software and IT need to identify IT decision-makers (ITDMs) within organizations. The modern digital environment in theory allows marketers to target individuals in organizations through specifically designed third-party audience segments based on deterministic prospect lists or probabilistic inference. However, in this paper we show that in our context, such ‘off-the-shelf’ segments perform no better at reaching the right person than random prospecting. We present evidence that even deterministic attribute information is flawed for ITDM identification, and that the poor campaign results can be partly linked to incorrect assignment of established prospect profiles to online identifiers. We then use access to our publisher network data to investigate what would happen if the advertiser had used first-party data that are less susceptible to the identified issues. We demonstrate that first-party demographics or contextual information allows advertisers and publishers to outperform both third-party ITDM audience segments and random prospecting. Our findings have implications for understanding the shift in digital advertising away from third-party cookie tracking, and how to execute digital marketing in the context of broad privacy regulation.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11129-023-09268-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11129-023-09268-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Is first- or third-party audience data more effective for reaching the ‘right’ customers? The case of IT decision-makers
Abstract Often marketers face the challenge of how to communicate best with the customers who have the right responsibilities, influence or purchasing power, especially in business-to-business (B2B) settings. For example, B2B marketers selling software and IT need to identify IT decision-makers (ITDMs) within organizations. The modern digital environment in theory allows marketers to target individuals in organizations through specifically designed third-party audience segments based on deterministic prospect lists or probabilistic inference. However, in this paper we show that in our context, such ‘off-the-shelf’ segments perform no better at reaching the right person than random prospecting. We present evidence that even deterministic attribute information is flawed for ITDM identification, and that the poor campaign results can be partly linked to incorrect assignment of established prospect profiles to online identifiers. We then use access to our publisher network data to investigate what would happen if the advertiser had used first-party data that are less susceptible to the identified issues. We demonstrate that first-party demographics or contextual information allows advertisers and publishers to outperform both third-party ITDM audience segments and random prospecting. Our findings have implications for understanding the shift in digital advertising away from third-party cookie tracking, and how to execute digital marketing in the context of broad privacy regulation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.