基于自旋的轨迹优化下降

IF 1.5 3区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Aircraft Pub Date : 2023-10-24 DOI:10.2514/1.c036912
Susmitha Patnala, Purnanand Elango, Ranjith Mohan, None Shamrao
{"title":"基于自旋的轨迹优化下降","authors":"Susmitha Patnala, Purnanand Elango, Ranjith Mohan, None Shamrao","doi":"10.2514/1.c036912","DOIUrl":null,"url":null,"abstract":"The paper investigates the unpowered descent of a rotor system through the upper atmosphere. Axial and helical trajectories are investigated in the context of fixed points as well as an optimal control problem for maximizing flight time. The mathematical model considered in the paper incorporates the fuselage degrees of freedom, dynamic inflow model, and airfoil characteristics that depend on Mach and Reynolds numbers. Considering a potential application as a descent mechanism, trajectory generation is performed to maximize the flight time. As an example, the performance in the Venusian atmosphere for rotors with different airfoil characteristics is assessed. To delineate the role of constraints, initial conditions, and aerodynamic forces on the optimal descent, the axial trajectory is studied by dividing it into two phases. The first phase corresponds to the trajectory determination through an optimization process wherein control inputs are provided such that states are within bounds. The second phase trajectory (below 70 km), although determined by solving the optimal control problem as in phase-I, is shown to be close to that achieved using control inputs corresponding to fixed points corresponding to each altitude. Apart from the axial flight, helical trajectories and corresponding fixed points are investigated using a rotating constant sideslip frame. Furthermore, optimal helical trajectories are also determined, which could be useful for rotor-based descent mechanisms. A comparison between axial and helical fixed-point solutions is also presented.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":"69 12","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autorotation-Based Descent with Trajectory Optimization\",\"authors\":\"Susmitha Patnala, Purnanand Elango, Ranjith Mohan, None Shamrao\",\"doi\":\"10.2514/1.c036912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates the unpowered descent of a rotor system through the upper atmosphere. Axial and helical trajectories are investigated in the context of fixed points as well as an optimal control problem for maximizing flight time. The mathematical model considered in the paper incorporates the fuselage degrees of freedom, dynamic inflow model, and airfoil characteristics that depend on Mach and Reynolds numbers. Considering a potential application as a descent mechanism, trajectory generation is performed to maximize the flight time. As an example, the performance in the Venusian atmosphere for rotors with different airfoil characteristics is assessed. To delineate the role of constraints, initial conditions, and aerodynamic forces on the optimal descent, the axial trajectory is studied by dividing it into two phases. The first phase corresponds to the trajectory determination through an optimization process wherein control inputs are provided such that states are within bounds. The second phase trajectory (below 70 km), although determined by solving the optimal control problem as in phase-I, is shown to be close to that achieved using control inputs corresponding to fixed points corresponding to each altitude. Apart from the axial flight, helical trajectories and corresponding fixed points are investigated using a rotating constant sideslip frame. Furthermore, optimal helical trajectories are also determined, which could be useful for rotor-based descent mechanisms. A comparison between axial and helical fixed-point solutions is also presented.\",\"PeriodicalId\":14927,\"journal\":{\"name\":\"Journal of Aircraft\",\"volume\":\"69 12\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aircraft\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.c036912\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.c036912","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了旋翼系统通过上层大气的无动力下降问题。轴向和螺旋轨迹在不动点的情况下进行了研究,并研究了最大化飞行时间的最优控制问题。本文所考虑的数学模型包含了机身自由度、动态入流模型和依赖于马赫数和雷诺数的翼型特性。考虑到作为下降机制的潜在应用,执行轨迹生成以最大化飞行时间。作为一个例子,对具有不同翼型特性的旋翼在金星大气中的性能进行了评估。为了描述约束条件、初始条件和气动力对最佳下降的作用,将轴向轨迹分为两个阶段进行研究。第一阶段通过优化过程对应于轨迹确定,其中提供的控制输入使得状态在边界内。第二阶段的轨迹(低于70公里),虽然通过解决第一阶段的最优控制问题来确定,但显示出与使用对应于每个高度对应的固定点的控制输入所实现的轨迹接近。除了轴向飞行外,螺旋轨迹和相应的固定点使用旋转恒定侧滑框架进行了研究。此外,还确定了最优的螺旋轨迹,这可能对基于转子的下降机制有用。给出了轴向不动点解与螺旋不动点解的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autorotation-Based Descent with Trajectory Optimization
The paper investigates the unpowered descent of a rotor system through the upper atmosphere. Axial and helical trajectories are investigated in the context of fixed points as well as an optimal control problem for maximizing flight time. The mathematical model considered in the paper incorporates the fuselage degrees of freedom, dynamic inflow model, and airfoil characteristics that depend on Mach and Reynolds numbers. Considering a potential application as a descent mechanism, trajectory generation is performed to maximize the flight time. As an example, the performance in the Venusian atmosphere for rotors with different airfoil characteristics is assessed. To delineate the role of constraints, initial conditions, and aerodynamic forces on the optimal descent, the axial trajectory is studied by dividing it into two phases. The first phase corresponds to the trajectory determination through an optimization process wherein control inputs are provided such that states are within bounds. The second phase trajectory (below 70 km), although determined by solving the optimal control problem as in phase-I, is shown to be close to that achieved using control inputs corresponding to fixed points corresponding to each altitude. Apart from the axial flight, helical trajectories and corresponding fixed points are investigated using a rotating constant sideslip frame. Furthermore, optimal helical trajectories are also determined, which could be useful for rotor-based descent mechanisms. A comparison between axial and helical fixed-point solutions is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Aircraft
Journal of Aircraft 工程技术-工程:宇航
CiteScore
4.50
自引率
31.80%
发文量
141
审稿时长
6 months
期刊介绍: This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.
期刊最新文献
Experimental Study on a Liquid Hydrogen Tank for Unmanned Aerial Vehicle Applications Numerical Study of Skipping Motion of Blended-Wing–Body Aircraft Ditching on Calm/Wavy Water Blended-Wing-Body Regional Aircraft Optimization with High-Fidelity Aerodynamics and Critical Design Requirements Towards Wall-Resolved Large-Eddy Simulation of the High-Lift Common Research Model Investigation of Hybrid Laminar Flow Control Capabilities from the Flight Envelope Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1