Francesco Zanetta, Daniele Nerini, Tom Beucler, Mark A. Liniger
{"title":"物理约束的深度学习温度和湿度后处理","authors":"Francesco Zanetta, Daniele Nerini, Tom Beucler, Mark A. Liniger","doi":"10.1175/aies-d-22-0089.1","DOIUrl":null,"url":null,"abstract":"Abstract Weather forecasting centers currently rely on statistical postprocessing methods to minimize forecast error. This improves skill but can lead to predictions that violate physical principles or disregard dependencies between variables, which can be problematic for downstream applications and for the trustworthiness of postprocessing models, especially when they are based on new machine learning approaches. Building on recent advances in physics-informed machine learning, we propose to achieve physical consistency in deep learning-based postprocessing models by integrating meteorological expertise in the form of analytic equations. Applied to the post-processing of surface weather in Switzerland, we find that constraining a neural network to enforce thermodynamic state equations yields physically-consistent predictions of temperature and humidity without compromising performance. Our approach is especially advantageous when data is scarce, and our findings suggest that incorporating domain expertise into postprocessing models allows the optimization of weather forecast information while satisfying application-specific requirements.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"CE-22 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-constrained deep learning postprocessing of temperature and humidity\",\"authors\":\"Francesco Zanetta, Daniele Nerini, Tom Beucler, Mark A. Liniger\",\"doi\":\"10.1175/aies-d-22-0089.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Weather forecasting centers currently rely on statistical postprocessing methods to minimize forecast error. This improves skill but can lead to predictions that violate physical principles or disregard dependencies between variables, which can be problematic for downstream applications and for the trustworthiness of postprocessing models, especially when they are based on new machine learning approaches. Building on recent advances in physics-informed machine learning, we propose to achieve physical consistency in deep learning-based postprocessing models by integrating meteorological expertise in the form of analytic equations. Applied to the post-processing of surface weather in Switzerland, we find that constraining a neural network to enforce thermodynamic state equations yields physically-consistent predictions of temperature and humidity without compromising performance. Our approach is especially advantageous when data is scarce, and our findings suggest that incorporating domain expertise into postprocessing models allows the optimization of weather forecast information while satisfying application-specific requirements.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"CE-22 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0089.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0089.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physics-constrained deep learning postprocessing of temperature and humidity
Abstract Weather forecasting centers currently rely on statistical postprocessing methods to minimize forecast error. This improves skill but can lead to predictions that violate physical principles or disregard dependencies between variables, which can be problematic for downstream applications and for the trustworthiness of postprocessing models, especially when they are based on new machine learning approaches. Building on recent advances in physics-informed machine learning, we propose to achieve physical consistency in deep learning-based postprocessing models by integrating meteorological expertise in the form of analytic equations. Applied to the post-processing of surface weather in Switzerland, we find that constraining a neural network to enforce thermodynamic state equations yields physically-consistent predictions of temperature and humidity without compromising performance. Our approach is especially advantageous when data is scarce, and our findings suggest that incorporating domain expertise into postprocessing models allows the optimization of weather forecast information while satisfying application-specific requirements.