磷酸化通过收紧糖原磷酸化酶的结构,促进死后肉的糖酵解速率

IF 0.8 4区 农林科学 Q4 FOOD SCIENCE & TECHNOLOGY Acta Alimentaria Pub Date : 2023-10-24 DOI:10.1556/066.2023.00178
Y. Bai, X. Li, C. Ren, X. Zheng, C. Hou, L. Chen, D. Zhang
{"title":"磷酸化通过收紧糖原磷酸化酶的结构,促进死后肉的糖酵解速率","authors":"Y. Bai, X. Li, C. Ren, X. Zheng, C. Hou, L. Chen, D. Zhang","doi":"10.1556/066.2023.00178","DOIUrl":null,"url":null,"abstract":"Abstract The activity and structural variation of glycogen phosphorylase (GP) at different phosphorylation levels during incubation at 4 °C were explored in this study. The GP was assigned into four treatments to obtain high/low phosphorylation levels, which were (1) treated with glycogen phosphorylase kinase (Phk) to obtain high phosphorylation level, (2) treated with protein kinase A to obtain high phosphorylation level, (3) treated with alkaline phosphatase to obtain low phosphorylation level, and (4) control. Compared with the control group, the content of α-helix and β-sheet increased and the secondary structure of GP changed from disorder to order after phosphorylation. The activity of GP was increased and its structure was more tightly in the Phk group than that in the control group. The phosphorylation at Ser277, Ser430, Ser809, Thr304, Tyr298, and Tyr525 resulted in tighter spatial structure. In conclusion, phosphorylation of GP enhanced its catalytic activity by making the secondary and spatial structure more orderly, which is of great significance for controlling meat quality by regulating glycolysis.","PeriodicalId":6908,"journal":{"name":"Acta Alimentaria","volume":"14 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorylation promoted the glycolytic rate in postmortem meat by tightening the structure of glycogen phosphorylase\",\"authors\":\"Y. Bai, X. Li, C. Ren, X. Zheng, C. Hou, L. Chen, D. Zhang\",\"doi\":\"10.1556/066.2023.00178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The activity and structural variation of glycogen phosphorylase (GP) at different phosphorylation levels during incubation at 4 °C were explored in this study. The GP was assigned into four treatments to obtain high/low phosphorylation levels, which were (1) treated with glycogen phosphorylase kinase (Phk) to obtain high phosphorylation level, (2) treated with protein kinase A to obtain high phosphorylation level, (3) treated with alkaline phosphatase to obtain low phosphorylation level, and (4) control. Compared with the control group, the content of α-helix and β-sheet increased and the secondary structure of GP changed from disorder to order after phosphorylation. The activity of GP was increased and its structure was more tightly in the Phk group than that in the control group. The phosphorylation at Ser277, Ser430, Ser809, Thr304, Tyr298, and Tyr525 resulted in tighter spatial structure. In conclusion, phosphorylation of GP enhanced its catalytic activity by making the secondary and spatial structure more orderly, which is of great significance for controlling meat quality by regulating glycolysis.\",\"PeriodicalId\":6908,\"journal\":{\"name\":\"Acta Alimentaria\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Alimentaria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/066.2023.00178\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Alimentaria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/066.2023.00178","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究探讨了糖原磷酸化酶(GP)在4℃孵育过程中不同磷酸化水平下的活性和结构变化。将GP分为四组处理,分别为(1)糖原磷酸化酶激酶(Phk)处理获得高磷酸化水平,(2)蛋白激酶A处理获得高磷酸化水平,(3)碱性磷酸酶处理获得低磷酸化水平,(4)对照。与对照组相比,磷酸化后GP α-螺旋和β-片的含量增加,二级结构由无序变为有序。与对照组相比,Phk组GP活性增加,结构更加紧密。Ser277、Ser430、Ser809、Thr304、Tyr298和Tyr525位点的磷酸化导致了更紧密的空间结构。综上所述,GP的磷酸化使其二级结构和空间结构更加有序,从而增强了其催化活性,这对于通过调节糖酵解来控制肉品质具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phosphorylation promoted the glycolytic rate in postmortem meat by tightening the structure of glycogen phosphorylase
Abstract The activity and structural variation of glycogen phosphorylase (GP) at different phosphorylation levels during incubation at 4 °C were explored in this study. The GP was assigned into four treatments to obtain high/low phosphorylation levels, which were (1) treated with glycogen phosphorylase kinase (Phk) to obtain high phosphorylation level, (2) treated with protein kinase A to obtain high phosphorylation level, (3) treated with alkaline phosphatase to obtain low phosphorylation level, and (4) control. Compared with the control group, the content of α-helix and β-sheet increased and the secondary structure of GP changed from disorder to order after phosphorylation. The activity of GP was increased and its structure was more tightly in the Phk group than that in the control group. The phosphorylation at Ser277, Ser430, Ser809, Thr304, Tyr298, and Tyr525 resulted in tighter spatial structure. In conclusion, phosphorylation of GP enhanced its catalytic activity by making the secondary and spatial structure more orderly, which is of great significance for controlling meat quality by regulating glycolysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Alimentaria
Acta Alimentaria 农林科学-食品科技
CiteScore
1.80
自引率
0.00%
发文量
47
审稿时长
18-36 weeks
期刊介绍: Acta Alimentaria publishes original papers and reviews on food science (physics, physical chemistry, chemistry, analysis, biology, microbiology, enzymology, engineering, instrumentation, automation and economics of foods, food production and food technology, food quality, post-harvest treatments, food safety and nutrition).
期刊最新文献
Optimisation of microencapsulation efficiency of propolis phenolic compounds by double emulsion method using response surface methodology The effect of different non-Saccharomyces strains on the flavour characteristics of mead Determination of in vitro antimicrobial and antibiofilm activity of Hypericum crenulatum against some food pathogens and its phenolic content Methods for experimental design, central composite design and the Box–Behnken design, to optimise operational parameters: A review Optimisation of ultrasonic-assisted hot-water extraction conditions of soluble dietary fibre from Lentinula edodes and analysis of its hypolipidaemic and anti-inflammatory properties in STZ-induced diabetic mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1