{"title":"中国西北部早二叠世湖泊甲烷成因白云岩降水","authors":"Funing Sun, Wenxuan Hu, Xiaolin Wang, Zhongya Hu, Haiguang Wu, Yangrui Guo, Gangjian Wei","doi":"10.1130/b37156.1","DOIUrl":null,"url":null,"abstract":"Microbes are known to mediate dolomite precipitation in laboratory experiments; however, the linkage of specific microbes to ancient dolomites remains poorly constrained due to scarce diagnostic biogeochemical signatures and mineralized microbial relics in the rock record. Here, we report the occurrence of methanogen-mediated dolomite in the Lower Permian lacustrine Lucaogou Formation in northwestern China. The clumped isotope (Δ47) temperature provides direct evidence of a low-temperature origin (typically <40 °C). The extremely positive δ26MgDSM3 (up to +0.44‰) and δ13CVPDB (up to +19‰) values in the dolomite indicate authigenic precipitation in methanogenic lake sediments. Micron-sized spheroidal bodies and filamentous and sheetlike structures are interpreted as mineralized coccoid methanogenic archaea and extracellular polymeric substances (EPSs), respectively. Dolomite nanoglobules (primarily 40−100 nm in diameter) are interpreted as mineralized viruses attached to the archaea and EPSs and between the cells. A combination of geochemical and microscale evidence confirms the microbial origin of the dolomite induced by methanogens and their associated bacteriophages. Furthermore, dolomite nanoglobules initially nucleated on the surfaces of methanogen cells, EPSs, and viruses and then merged into larger aggregates. The formation of microbial dolomite is characterized by a metabolic incubation, heterogeneous nucleation, and aggregative growth pathway. These findings provide valuable clues to decipher the biosignatures of these particular ancient dolomites.","PeriodicalId":55104,"journal":{"name":"Geological Society of America Bulletin","volume":"41 8","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methanogen-mediated dolomite precipitation in an early Permian lake in northwestern China\",\"authors\":\"Funing Sun, Wenxuan Hu, Xiaolin Wang, Zhongya Hu, Haiguang Wu, Yangrui Guo, Gangjian Wei\",\"doi\":\"10.1130/b37156.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbes are known to mediate dolomite precipitation in laboratory experiments; however, the linkage of specific microbes to ancient dolomites remains poorly constrained due to scarce diagnostic biogeochemical signatures and mineralized microbial relics in the rock record. Here, we report the occurrence of methanogen-mediated dolomite in the Lower Permian lacustrine Lucaogou Formation in northwestern China. The clumped isotope (Δ47) temperature provides direct evidence of a low-temperature origin (typically <40 °C). The extremely positive δ26MgDSM3 (up to +0.44‰) and δ13CVPDB (up to +19‰) values in the dolomite indicate authigenic precipitation in methanogenic lake sediments. Micron-sized spheroidal bodies and filamentous and sheetlike structures are interpreted as mineralized coccoid methanogenic archaea and extracellular polymeric substances (EPSs), respectively. Dolomite nanoglobules (primarily 40−100 nm in diameter) are interpreted as mineralized viruses attached to the archaea and EPSs and between the cells. A combination of geochemical and microscale evidence confirms the microbial origin of the dolomite induced by methanogens and their associated bacteriophages. Furthermore, dolomite nanoglobules initially nucleated on the surfaces of methanogen cells, EPSs, and viruses and then merged into larger aggregates. The formation of microbial dolomite is characterized by a metabolic incubation, heterogeneous nucleation, and aggregative growth pathway. These findings provide valuable clues to decipher the biosignatures of these particular ancient dolomites.\",\"PeriodicalId\":55104,\"journal\":{\"name\":\"Geological Society of America Bulletin\",\"volume\":\"41 8\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Society of America Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/b37156.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/b37156.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Methanogen-mediated dolomite precipitation in an early Permian lake in northwestern China
Microbes are known to mediate dolomite precipitation in laboratory experiments; however, the linkage of specific microbes to ancient dolomites remains poorly constrained due to scarce diagnostic biogeochemical signatures and mineralized microbial relics in the rock record. Here, we report the occurrence of methanogen-mediated dolomite in the Lower Permian lacustrine Lucaogou Formation in northwestern China. The clumped isotope (Δ47) temperature provides direct evidence of a low-temperature origin (typically <40 °C). The extremely positive δ26MgDSM3 (up to +0.44‰) and δ13CVPDB (up to +19‰) values in the dolomite indicate authigenic precipitation in methanogenic lake sediments. Micron-sized spheroidal bodies and filamentous and sheetlike structures are interpreted as mineralized coccoid methanogenic archaea and extracellular polymeric substances (EPSs), respectively. Dolomite nanoglobules (primarily 40−100 nm in diameter) are interpreted as mineralized viruses attached to the archaea and EPSs and between the cells. A combination of geochemical and microscale evidence confirms the microbial origin of the dolomite induced by methanogens and their associated bacteriophages. Furthermore, dolomite nanoglobules initially nucleated on the surfaces of methanogen cells, EPSs, and viruses and then merged into larger aggregates. The formation of microbial dolomite is characterized by a metabolic incubation, heterogeneous nucleation, and aggregative growth pathway. These findings provide valuable clues to decipher the biosignatures of these particular ancient dolomites.
期刊介绍:
The GSA Bulletin is the Society''s premier scholarly journal, published continuously since 1890. Its first editor was William John (WJ) McGee, who was responsible for establishing much of its original style and format. Fully refereed, each bimonthly issue includes 16-20 papers focusing on the most definitive, timely, and classic-style research in all earth-science disciplines. The Bulletin welcomes most contributions that are data-rich, mature studies of broad interest (i.e., of interest to more than one sub-discipline of earth science) and of lasting, archival quality. These include (but are not limited to) studies related to tectonics, structural geology, geochemistry, geophysics, hydrogeology, marine geology, paleoclimatology, planetary geology, quaternary geology/geomorphology, sedimentary geology, stratigraphy, and volcanology. The journal is committed to further developing both the scope of its content and its international profile so that it publishes the most current earth science research that will be of wide interest to geoscientists.