C Rathinasuriyan, PV Elumalai, J Bharani Chandar, K Karthik, Sreenivasa Reddy Medapati, Ahmad Aziz Alahmadi, Mamdooh Alwetaishi, Ali Nasser Alzaed, MA Kalam, Kiran Shahapurkar
{"title":"基于焊接的金属零件增材制造工艺","authors":"C Rathinasuriyan, PV Elumalai, J Bharani Chandar, K Karthik, Sreenivasa Reddy Medapati, Ahmad Aziz Alahmadi, Mamdooh Alwetaishi, Ali Nasser Alzaed, MA Kalam, Kiran Shahapurkar","doi":"10.1177/26349833231210572","DOIUrl":null,"url":null,"abstract":"Additive Manufacturing (AM) is modernizing the manufacturing industry by enabling the layer-by-layer deposition process to manufacture objects in nearly any form with minimum material waste. However, components developed utilizing the AM process have dimensional constraints. To address this issue, AM-produced metal materials can be coupled with various welding processes. This article focuses on the foundations, highlighting the distinguishing features, capabilities, and challenges of welding-based AM processes by categorizing them into two major groups; arc welding-based AM like Cold Metal Transfer (CMT), Gas Metal Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW), Plasma Arc Welding (PAW), and high-energy density welding based AM like Laser Beam Welding (LBW) and Electron Beam Welding (EBW). The prior study findings of welding-based AM metal components on mechanical characteristics and microstructural characterization have been addressed. This work will aid researchers, academicians, and professional welders since it gathers vital information on welding-based AM processes. Furthermore, current research in the arena of welding-based AM and its future opportunities has been discussed.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"75 13-14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Welding-based additive manufacturing processes for fabrication of metallic parts\",\"authors\":\"C Rathinasuriyan, PV Elumalai, J Bharani Chandar, K Karthik, Sreenivasa Reddy Medapati, Ahmad Aziz Alahmadi, Mamdooh Alwetaishi, Ali Nasser Alzaed, MA Kalam, Kiran Shahapurkar\",\"doi\":\"10.1177/26349833231210572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive Manufacturing (AM) is modernizing the manufacturing industry by enabling the layer-by-layer deposition process to manufacture objects in nearly any form with minimum material waste. However, components developed utilizing the AM process have dimensional constraints. To address this issue, AM-produced metal materials can be coupled with various welding processes. This article focuses on the foundations, highlighting the distinguishing features, capabilities, and challenges of welding-based AM processes by categorizing them into two major groups; arc welding-based AM like Cold Metal Transfer (CMT), Gas Metal Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW), Plasma Arc Welding (PAW), and high-energy density welding based AM like Laser Beam Welding (LBW) and Electron Beam Welding (EBW). The prior study findings of welding-based AM metal components on mechanical characteristics and microstructural characterization have been addressed. This work will aid researchers, academicians, and professional welders since it gathers vital information on welding-based AM processes. Furthermore, current research in the arena of welding-based AM and its future opportunities has been discussed.\",\"PeriodicalId\":10608,\"journal\":{\"name\":\"Composites and Advanced Materials\",\"volume\":\"75 13-14\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites and Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26349833231210572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26349833231210572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Welding-based additive manufacturing processes for fabrication of metallic parts
Additive Manufacturing (AM) is modernizing the manufacturing industry by enabling the layer-by-layer deposition process to manufacture objects in nearly any form with minimum material waste. However, components developed utilizing the AM process have dimensional constraints. To address this issue, AM-produced metal materials can be coupled with various welding processes. This article focuses on the foundations, highlighting the distinguishing features, capabilities, and challenges of welding-based AM processes by categorizing them into two major groups; arc welding-based AM like Cold Metal Transfer (CMT), Gas Metal Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW), Plasma Arc Welding (PAW), and high-energy density welding based AM like Laser Beam Welding (LBW) and Electron Beam Welding (EBW). The prior study findings of welding-based AM metal components on mechanical characteristics and microstructural characterization have been addressed. This work will aid researchers, academicians, and professional welders since it gathers vital information on welding-based AM processes. Furthermore, current research in the arena of welding-based AM and its future opportunities has been discussed.