斜交冲击下钢筋混凝土框架倒塌分析的简化数值模型

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Magazine of Concrete Research Pub Date : 2023-11-08 DOI:10.1680/jmacr.23.00046
Yujing Zhou, Xiaowei Cheng, Yi Li, Fangfang Liu
{"title":"斜交冲击下钢筋混凝土框架倒塌分析的简化数值模型","authors":"Yujing Zhou, Xiaowei Cheng, Yi Li, Fangfang Liu","doi":"10.1680/jmacr.23.00046","DOIUrl":null,"url":null,"abstract":"The objective of this study is to develop a simplified numerical model that can be used to accurately and quickly conduct collapse analysis of a reinforced concrete (RC) frame impacted by a vehicle obliquely at 45°. The simplified numerical model included introduces a simplified RC frame and a simplified vehicle. For the simplified RC frame, a mixed modelling technique was used, in which structural components that experienced serious damage were simulated using detailed elements, while the retained structural components were simulated by larger elements. A constraint algorithm of nodal rigid body in LS-DYNA was adopted to guarantee the displacement compatibility of two kinds of element. For the simplified vehicle model, the spring–mass system was improved on the basis of the energy conservation principle to represent the vehicle in a 45° impact. Combining the simplified RC frame model and vehicle model, the impact response of an RC frame subjected to vehicle impact was studied and compared with the results of a detailed RC frame model impacted by a detailed vehicle. The validation confirmed that these introduced simplifications could significantly improve the computational efficiency and ensure the computational accuracy for the collapse analysis of an RC frame subjected to vehicle impact.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":" 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified numerical model for the collapse analysis of RC frame under the oblique impact\",\"authors\":\"Yujing Zhou, Xiaowei Cheng, Yi Li, Fangfang Liu\",\"doi\":\"10.1680/jmacr.23.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to develop a simplified numerical model that can be used to accurately and quickly conduct collapse analysis of a reinforced concrete (RC) frame impacted by a vehicle obliquely at 45°. The simplified numerical model included introduces a simplified RC frame and a simplified vehicle. For the simplified RC frame, a mixed modelling technique was used, in which structural components that experienced serious damage were simulated using detailed elements, while the retained structural components were simulated by larger elements. A constraint algorithm of nodal rigid body in LS-DYNA was adopted to guarantee the displacement compatibility of two kinds of element. For the simplified vehicle model, the spring–mass system was improved on the basis of the energy conservation principle to represent the vehicle in a 45° impact. Combining the simplified RC frame model and vehicle model, the impact response of an RC frame subjected to vehicle impact was studied and compared with the results of a detailed RC frame model impacted by a detailed vehicle. The validation confirmed that these introduced simplifications could significantly improve the computational efficiency and ensure the computational accuracy for the collapse analysis of an RC frame subjected to vehicle impact.\",\"PeriodicalId\":18113,\"journal\":{\"name\":\"Magazine of Concrete Research\",\"volume\":\" 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magazine of Concrete Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jmacr.23.00046\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jmacr.23.00046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是开发一种简化的数值模型,该模型可用于准确、快速地进行钢筋混凝土(RC)框架在45°斜面上受到车辆撞击的倒塌分析。简化的数值模型包括一个简化的钢筋混凝土框架和一个简化的车辆。对于简化的钢筋混凝土框架,采用混合建模技术,其中结构构件遭受严重破坏时使用细部单元模拟,而保留的结构构件则使用较大的单元模拟。采用LS-DYNA中节点刚体约束算法,保证了两种单元的位移协调。对于简化的车辆模型,基于能量守恒原理对弹簧-质量系统进行了改进,以表示45°碰撞时的车辆。将简化的RC框架模型与车辆模型相结合,研究了RC框架在车辆冲击下的冲击响应,并与详细的RC框架模型在车辆冲击下的结果进行了比较。验证结果表明,这些简化方法能够显著提高计算效率,保证钢筋混凝土框架在车辆碰撞作用下的倒塌分析的计算精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simplified numerical model for the collapse analysis of RC frame under the oblique impact
The objective of this study is to develop a simplified numerical model that can be used to accurately and quickly conduct collapse analysis of a reinforced concrete (RC) frame impacted by a vehicle obliquely at 45°. The simplified numerical model included introduces a simplified RC frame and a simplified vehicle. For the simplified RC frame, a mixed modelling technique was used, in which structural components that experienced serious damage were simulated using detailed elements, while the retained structural components were simulated by larger elements. A constraint algorithm of nodal rigid body in LS-DYNA was adopted to guarantee the displacement compatibility of two kinds of element. For the simplified vehicle model, the spring–mass system was improved on the basis of the energy conservation principle to represent the vehicle in a 45° impact. Combining the simplified RC frame model and vehicle model, the impact response of an RC frame subjected to vehicle impact was studied and compared with the results of a detailed RC frame model impacted by a detailed vehicle. The validation confirmed that these introduced simplifications could significantly improve the computational efficiency and ensure the computational accuracy for the collapse analysis of an RC frame subjected to vehicle impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magazine of Concrete Research
Magazine of Concrete Research 工程技术-材料科学:综合
CiteScore
4.60
自引率
11.10%
发文量
102
审稿时长
5 months
期刊介绍: For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed. Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.
期刊最新文献
Characterisation proposal of direct shear strength of steel fibre-reinforced concrete Punching shear tests and design of UHTCC-enhanced RC slab-column joints with shear reinforcements Engineering and microstructural properties of self-compacting concrete containing coarse recycled concrete aggregate Modelling chloride diffusion in concrete with carbonated surface layer Shear friction capacity of monolithic construction joints reinforced with self-prestressing reinforcing steel bars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1