使用髋关节距离(x光片)作为输入是否会改变运动学和动力学输出,这是否与临床相关?

Andreas Kranzl, Groblschegg Leonore, Attwenger Bernhard, Durstberger Sebastian, Koppenwallner Laurin Xaver, Unglaube Fabian
{"title":"使用髋关节距离(x光片)作为输入是否会改变运动学和动力学输出,这是否与临床相关?","authors":"Andreas Kranzl, Groblschegg Leonore, Attwenger Bernhard, Durstberger Sebastian, Koppenwallner Laurin Xaver, Unglaube Fabian","doi":"10.1016/j.gaitpost.2023.07.130","DOIUrl":null,"url":null,"abstract":"There are a number of methods for determining the centre of the hip joint (HJ). The most common are regression equations or functional methods. In individual cases, however, we do not know how well the HJ centre is actually determined. Several papers present Harrington's regression formula as the best choice (Harrington et al., 2007; Kainz et al., 2015; Peters et al., 2012). If an image of the pelvis is available, the HJCD can be determined from it, and this can be used to optimise the determination of the joint centre in the regression formula. Does using the hip joint distance (x-ray) as an input change the joint parameters? A retrospective analysis of the gait laboratory database identified patients who had a calibrated radiograph and a 3D gait analysis. The calculated HJCD from the gait data was compared with that from the radiograph. In addition, the ASIS distance was calculated using the hip joint distance from the radiograph, and again the HJ position was determined using the newly obtained ASIS distance in the Harrington formula. The gait data were statistically compared using SPM analysis and the maximum distance between the two methods was determined over all curves. This was compared with the minimal detectable changes (MDC) (Wilken et al., 2012). Data from 349 patients (legs n=698, age: 4-22 years) with anterior knee malalignment without neuromuscular disease were analysed. HJCD correlations between radiographs and 3DGA values were 0.662 (p<0.001) using the Harrington method. The Bland-Altman plots for HJCD showed minimal differences using the Harrington regression formula. However, there were differences of up to 40 mm between the two methods of determining the HJCD. A comparison of the gait results with the two calculated equations shows significant differences (SPM). In most cases the differences between the two methods were negligible, but in some patients (legs) they were above the MDC value.Download : Download high-res image (85KB)Download : Download full-size image On average, the HJ distance from the radiograph and the gait analysis data were in good agreement, but not in every patient (up to 40 mm). The gait curves show significantly different results according to SPM analysis. In most cases the differences are below the MDC, but in individual patients there may well be clinically relevant differences in the results. Therefore, if pelvic imaging is available, we recommend using it to calculate the HJ centre.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does using the hip joint distance (x-ray) as an input change the kinematic, kinetic output and is this clinically relevant?\",\"authors\":\"Andreas Kranzl, Groblschegg Leonore, Attwenger Bernhard, Durstberger Sebastian, Koppenwallner Laurin Xaver, Unglaube Fabian\",\"doi\":\"10.1016/j.gaitpost.2023.07.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are a number of methods for determining the centre of the hip joint (HJ). The most common are regression equations or functional methods. In individual cases, however, we do not know how well the HJ centre is actually determined. Several papers present Harrington's regression formula as the best choice (Harrington et al., 2007; Kainz et al., 2015; Peters et al., 2012). If an image of the pelvis is available, the HJCD can be determined from it, and this can be used to optimise the determination of the joint centre in the regression formula. Does using the hip joint distance (x-ray) as an input change the joint parameters? A retrospective analysis of the gait laboratory database identified patients who had a calibrated radiograph and a 3D gait analysis. The calculated HJCD from the gait data was compared with that from the radiograph. In addition, the ASIS distance was calculated using the hip joint distance from the radiograph, and again the HJ position was determined using the newly obtained ASIS distance in the Harrington formula. The gait data were statistically compared using SPM analysis and the maximum distance between the two methods was determined over all curves. This was compared with the minimal detectable changes (MDC) (Wilken et al., 2012). Data from 349 patients (legs n=698, age: 4-22 years) with anterior knee malalignment without neuromuscular disease were analysed. HJCD correlations between radiographs and 3DGA values were 0.662 (p<0.001) using the Harrington method. The Bland-Altman plots for HJCD showed minimal differences using the Harrington regression formula. However, there were differences of up to 40 mm between the two methods of determining the HJCD. A comparison of the gait results with the two calculated equations shows significant differences (SPM). In most cases the differences between the two methods were negligible, but in some patients (legs) they were above the MDC value.Download : Download high-res image (85KB)Download : Download full-size image On average, the HJ distance from the radiograph and the gait analysis data were in good agreement, but not in every patient (up to 40 mm). The gait curves show significantly different results according to SPM analysis. In most cases the differences are below the MDC, but in individual patients there may well be clinically relevant differences in the results. Therefore, if pelvic imaging is available, we recommend using it to calculate the HJ centre.\",\"PeriodicalId\":94018,\"journal\":{\"name\":\"Gait & posture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gait & posture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gaitpost.2023.07.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gait & posture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gaitpost.2023.07.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有许多确定髋关节中心(HJ)的方法。最常见的是回归方程或泛函方法。然而,在个别情况下,我们不知道HJ中心实际上是如何确定的。有几篇论文将Harrington的回归公式作为最佳选择(Harrington et al., 2007;Kainz et al., 2015;Peters et al., 2012)。如果骨盆的图像是可用的,HJCD可以从中确定,这可以用来优化回归公式中的关节中心的确定。使用髋关节距离(x线)作为输入是否会改变关节参数?步态实验室数据库的回顾性分析确定了有校准的x光片和3D步态分析的患者。将步态数据计算的HJCD与x线片的HJCD进行比较。此外,根据髋关节与x线片的距离计算出ASIS距离,再根据哈林顿公式中新获得的ASIS距离确定HJ位置。采用SPM分析对步态数据进行统计比较,并确定两种方法在所有曲线上的最大距离。这与最小可检测变化(MDC)进行了比较(Wilken et al., 2012)。分析了349例无神经肌肉疾病的膝关节前位失调患者(腿数698,年龄4-22岁)的数据。采用Harrington方法,x线片与3DGA值的HJCD相关性为0.662 (p<0.001)。使用哈林顿回归公式,HJCD的Bland-Altman图显示最小的差异。然而,有差异高达40毫米之间的两种方法确定HJCD。步态结果与两种计算方程的比较显示出显著差异(SPM)。在大多数情况下,两种方法之间的差异可以忽略不计,但在一些患者(腿部),它们高于MDC值。平均而言,与x线片的HJ距离和步态分析数据符合得很好,但并非每个患者(高达40 mm)。根据SPM分析,步态曲线有明显差异。在大多数情况下,差异低于MDC,但在个别患者中,结果可能存在临床相关差异。因此,如果盆腔成像可用,我们建议使用它来计算HJ中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Does using the hip joint distance (x-ray) as an input change the kinematic, kinetic output and is this clinically relevant?
There are a number of methods for determining the centre of the hip joint (HJ). The most common are regression equations or functional methods. In individual cases, however, we do not know how well the HJ centre is actually determined. Several papers present Harrington's regression formula as the best choice (Harrington et al., 2007; Kainz et al., 2015; Peters et al., 2012). If an image of the pelvis is available, the HJCD can be determined from it, and this can be used to optimise the determination of the joint centre in the regression formula. Does using the hip joint distance (x-ray) as an input change the joint parameters? A retrospective analysis of the gait laboratory database identified patients who had a calibrated radiograph and a 3D gait analysis. The calculated HJCD from the gait data was compared with that from the radiograph. In addition, the ASIS distance was calculated using the hip joint distance from the radiograph, and again the HJ position was determined using the newly obtained ASIS distance in the Harrington formula. The gait data were statistically compared using SPM analysis and the maximum distance between the two methods was determined over all curves. This was compared with the minimal detectable changes (MDC) (Wilken et al., 2012). Data from 349 patients (legs n=698, age: 4-22 years) with anterior knee malalignment without neuromuscular disease were analysed. HJCD correlations between radiographs and 3DGA values were 0.662 (p<0.001) using the Harrington method. The Bland-Altman plots for HJCD showed minimal differences using the Harrington regression formula. However, there were differences of up to 40 mm between the two methods of determining the HJCD. A comparison of the gait results with the two calculated equations shows significant differences (SPM). In most cases the differences between the two methods were negligible, but in some patients (legs) they were above the MDC value.Download : Download high-res image (85KB)Download : Download full-size image On average, the HJ distance from the radiograph and the gait analysis data were in good agreement, but not in every patient (up to 40 mm). The gait curves show significantly different results according to SPM analysis. In most cases the differences are below the MDC, but in individual patients there may well be clinically relevant differences in the results. Therefore, if pelvic imaging is available, we recommend using it to calculate the HJ centre.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of medial longitudinal arch flexibility on lower limb joint coupling coordination and gait impulse. Mechanisms of gait speed changes in middle-aged adults: Simultaneous analysis of magnitude and temporal effects. The effects of cognitive-motor interference on walking performance in adolescents with low balance. How reliable are femoropelvic kinematics during deep squats? The influence of subject-specific skeletal modelling on measurement variability. Proprioceptive-perception threshold is impaired in cerebral palsy and is associated with worse balance performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1