多发性硬化症患者的前后行走及其与跌倒和害怕跌倒的关系

Heidi Stölzer-Hutsch, Dirk Schriefer, Katrin Trentzsch, Tjalf Ziemssen
{"title":"多发性硬化症患者的前后行走及其与跌倒和害怕跌倒的关系","authors":"Heidi Stölzer-Hutsch, Dirk Schriefer, Katrin Trentzsch, Tjalf Ziemssen","doi":"10.1016/j.gaitpost.2023.07.238","DOIUrl":null,"url":null,"abstract":"Common symptoms in people with multiple sclerosis (pwMS) are walking limitations that can reduce the quality of life and lead to an increased risk of falling and fear of falling [1,2]. Instrumented gait analysis on a walkway with integrated pressure sensors can be used for assessment of both forward and backward walking. Walking backwards has been established as a more sensitive parameter to detect fallers, compared to walking forwards [3]. It is unknown whether fear of falling can be already detected by walking backwards. For possible interventions, it is important to identify patients with falls resp. fear of falling as early as possible. Is there an association between forward and backward walking and falls resp. fear of falling in pwMS? 705 pwMS (71.6% female, 82.1% with relapsing remitting MS) completed three test conditions on an eight-meter pressor sensor walking way (GAITRite® System) without shoes: (i) walking forwards at a self-selected normal speed, (ii) walking forwards at fast speed and (iii) walking backwards at the highest possible speed. In addition, fall history and fear of falling in the previous month were assessed. Velocity, step length and stance phase of gait cycle were determined in all test conditions. In walking backwards condition, time for 3-meter backward walking test (3MBWT) was additionally included in the analysis. Multiple logistic regressions adjusted for age, gender, body mass index (BMI) and Expanded Disability Status Scale (EDSS) were applied. Of 705 pwMS, 10.6% were fallers (n=75; age: 46.52 ±10.79; BMI: 26.05 ±5.66; EDSS median: 3.5), while 31.9% presented with fear of falling (n=225; age: 47.58 ±11,29; BMI: 25.73 ±5.01; EDSS median: 3.5). Step length during fast walking (odds ratio (OR) 0.982; CI 0.966-0.998) and velocity during walking backwards proved to be significant indicators of falls with an OR of 0.982 (CI 0.970-0.995). All parameters of walking backwards (velocity, step length, stance of cycle and 3MBWT) and stance of cycle in normal walking could be proven as an indicator of fear of falling (see Fig. 1). In addition to identifying patients at risk of falling [3], the results suggest that walking backwards also can identify pwMS presenting with fear of falling. Longitudinal analyses will be performed to validate the clinical utility of walking backwards. Fig. 1.Download : Download high-res image (111KB)Download : Download full-size image","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backward and forward walking and its association with falls and fear of falling in people with multiple sclerosis\",\"authors\":\"Heidi Stölzer-Hutsch, Dirk Schriefer, Katrin Trentzsch, Tjalf Ziemssen\",\"doi\":\"10.1016/j.gaitpost.2023.07.238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Common symptoms in people with multiple sclerosis (pwMS) are walking limitations that can reduce the quality of life and lead to an increased risk of falling and fear of falling [1,2]. Instrumented gait analysis on a walkway with integrated pressure sensors can be used for assessment of both forward and backward walking. Walking backwards has been established as a more sensitive parameter to detect fallers, compared to walking forwards [3]. It is unknown whether fear of falling can be already detected by walking backwards. For possible interventions, it is important to identify patients with falls resp. fear of falling as early as possible. Is there an association between forward and backward walking and falls resp. fear of falling in pwMS? 705 pwMS (71.6% female, 82.1% with relapsing remitting MS) completed three test conditions on an eight-meter pressor sensor walking way (GAITRite® System) without shoes: (i) walking forwards at a self-selected normal speed, (ii) walking forwards at fast speed and (iii) walking backwards at the highest possible speed. In addition, fall history and fear of falling in the previous month were assessed. Velocity, step length and stance phase of gait cycle were determined in all test conditions. In walking backwards condition, time for 3-meter backward walking test (3MBWT) was additionally included in the analysis. Multiple logistic regressions adjusted for age, gender, body mass index (BMI) and Expanded Disability Status Scale (EDSS) were applied. Of 705 pwMS, 10.6% were fallers (n=75; age: 46.52 ±10.79; BMI: 26.05 ±5.66; EDSS median: 3.5), while 31.9% presented with fear of falling (n=225; age: 47.58 ±11,29; BMI: 25.73 ±5.01; EDSS median: 3.5). Step length during fast walking (odds ratio (OR) 0.982; CI 0.966-0.998) and velocity during walking backwards proved to be significant indicators of falls with an OR of 0.982 (CI 0.970-0.995). All parameters of walking backwards (velocity, step length, stance of cycle and 3MBWT) and stance of cycle in normal walking could be proven as an indicator of fear of falling (see Fig. 1). In addition to identifying patients at risk of falling [3], the results suggest that walking backwards also can identify pwMS presenting with fear of falling. Longitudinal analyses will be performed to validate the clinical utility of walking backwards. Fig. 1.Download : Download high-res image (111KB)Download : Download full-size image\",\"PeriodicalId\":94018,\"journal\":{\"name\":\"Gait & posture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gait & posture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gaitpost.2023.07.238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gait & posture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gaitpost.2023.07.238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(pwMS)患者的常见症状是行走受限,这会降低生活质量,并导致跌倒风险增加和对跌倒的恐惧[1,2]。在集成压力传感器的人行道上进行仪器步态分析,可用于评估向前和向后行走。与向前行走相比,向后行走被认为是检测坠落者的更敏感的参数[3]。目前尚不清楚是否可以通过后退来检测出对摔倒的恐惧。对于可能的干预措施,识别有跌倒倾向的患者是很重要的。怕摔倒的趁早。向前和向后走路和跌倒有关系吗?害怕掉进pwMS?705名pwMS(71.6%为女性,82.1%为复发缓解型MS)在不穿鞋的8米压力传感器行走方式(GAITRite®系统)上完成了三个测试条件:(i)以自己选择的正常速度向前行走,(ii)以快速向前行走,(iii)以尽可能快的速度向后行走。此外,还评估了上个月的跌倒史和对跌倒的恐惧。在所有测试条件下测定步态周期的速度、步长和站立相位。在倒走条件下,3米倒走测试时间(3MBWT)也被纳入分析。采用校正年龄、性别、体重指数(BMI)和扩展残疾状态量表(EDSS)的多元logistic回归。705名pwMS患者中,10.6%为跌倒患者(n=75;年龄:46.52±10.79;Bmi: 26.05±5.66;EDSS中位数:3.5),而31.9%表现为害怕跌倒(n=225;年龄:47.58±11.29岁;Bmi: 25.73±5.01;EDSS中位数:3.5)。快速步行时的步长(比值比(OR) 0.982;CI 0.966 ~ 0.998)和倒走速度是跌倒的显著指标,OR为0.982 (CI 0.970 ~ 0.995)。正常行走时倒走的所有参数(速度、步长、步数、3MBWT)和步数都可以被证明是害怕跌倒的指标(见图1)。结果表明,倒走除了可以识别有跌倒风险的患者[3]外,还可以识别有跌倒恐惧的pwMS。将进行纵向分析以验证向后行走的临床效用。图1所示。下载:下载高分辨率图片(111KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Backward and forward walking and its association with falls and fear of falling in people with multiple sclerosis
Common symptoms in people with multiple sclerosis (pwMS) are walking limitations that can reduce the quality of life and lead to an increased risk of falling and fear of falling [1,2]. Instrumented gait analysis on a walkway with integrated pressure sensors can be used for assessment of both forward and backward walking. Walking backwards has been established as a more sensitive parameter to detect fallers, compared to walking forwards [3]. It is unknown whether fear of falling can be already detected by walking backwards. For possible interventions, it is important to identify patients with falls resp. fear of falling as early as possible. Is there an association between forward and backward walking and falls resp. fear of falling in pwMS? 705 pwMS (71.6% female, 82.1% with relapsing remitting MS) completed three test conditions on an eight-meter pressor sensor walking way (GAITRite® System) without shoes: (i) walking forwards at a self-selected normal speed, (ii) walking forwards at fast speed and (iii) walking backwards at the highest possible speed. In addition, fall history and fear of falling in the previous month were assessed. Velocity, step length and stance phase of gait cycle were determined in all test conditions. In walking backwards condition, time for 3-meter backward walking test (3MBWT) was additionally included in the analysis. Multiple logistic regressions adjusted for age, gender, body mass index (BMI) and Expanded Disability Status Scale (EDSS) were applied. Of 705 pwMS, 10.6% were fallers (n=75; age: 46.52 ±10.79; BMI: 26.05 ±5.66; EDSS median: 3.5), while 31.9% presented with fear of falling (n=225; age: 47.58 ±11,29; BMI: 25.73 ±5.01; EDSS median: 3.5). Step length during fast walking (odds ratio (OR) 0.982; CI 0.966-0.998) and velocity during walking backwards proved to be significant indicators of falls with an OR of 0.982 (CI 0.970-0.995). All parameters of walking backwards (velocity, step length, stance of cycle and 3MBWT) and stance of cycle in normal walking could be proven as an indicator of fear of falling (see Fig. 1). In addition to identifying patients at risk of falling [3], the results suggest that walking backwards also can identify pwMS presenting with fear of falling. Longitudinal analyses will be performed to validate the clinical utility of walking backwards. Fig. 1.Download : Download high-res image (111KB)Download : Download full-size image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of medial longitudinal arch flexibility on lower limb joint coupling coordination and gait impulse. Mechanisms of gait speed changes in middle-aged adults: Simultaneous analysis of magnitude and temporal effects. The effects of cognitive-motor interference on walking performance in adolescents with low balance. How reliable are femoropelvic kinematics during deep squats? The influence of subject-specific skeletal modelling on measurement variability. Proprioceptive-perception threshold is impaired in cerebral palsy and is associated with worse balance performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1