生物力学特征的可解释机器学习方法,以识别基于人口的老龄化设置中的弱点

Mariapia Musci, Simona Aresta, Francesco Bottiglione, Michele Ruta, Tommaso Di Noia, Rodolfo Sardone, Ilaria Bortone
{"title":"生物力学特征的可解释机器学习方法,以识别基于人口的老龄化设置中的弱点","authors":"Mariapia Musci, Simona Aresta, Francesco Bottiglione, Michele Ruta, Tommaso Di Noia, Rodolfo Sardone, Ilaria Bortone","doi":"10.1016/j.gaitpost.2023.07.167","DOIUrl":null,"url":null,"abstract":"Weakness, as measured by maximal Hand Grip Strength (HGS), represents one of the five criteria used in Fried's definition of frailty [1] and is associated with a wide range of health conditions, which makes it challenging to delineate what body system processes are responsible for weakness. [2]. Still, poor studies have investigated the associations between HGS and dynamic functional assessments [3]. To identify a pattern of functional characteristics, extracted from the 5-repetitions-sit-to-stand (5STS) test biomechanical signals best predict weakness. An Explanation approach to a Machine Learning model was also used. In a subcohort of the longitudinal study of aging [4], 86 subjects over 65 performed the 5STS test [5,6]. They were equipped with an IMU on the L5 vertebra and four sEMG probes (BTS Bioengineering) on the Gastrocnemius Medialis and Tibialis Anterior both side muscles. Several kinematic and muscular features were extracted from the cycle, standing and sitting phases. A handgrip dynamometer was used to measure HGS. Men and women who were considered weak had HGS<26 kg and <16 kg, respectively. Socio-demographic information (age, sex and BMI) was also included. The final dataset consisted of 119 features for all subjects. We first performed the undersampling of the majority class (without weakness); then the dataset was divided into 70% training and 30% testing and normalised using the z-score method. Because of the curse of dimensionality, a pipeline for feature selection and hyperparameter tuning, using the GridSearchCV method, was defined to obtain the best Kernel-SVM model. The best model was chosen according to the accuracy score. To evaluate our model accuracy, precision and recall were calculated. All the analyses were performed using the Scikit-Learn library [7] with Python 3.6. To explain our model Python's SHAP library was used [8]. From the hyperparameter tuning, we obtained six features: hip power (Whip), power along the vertical axis (Wvert), and cycle jerk along the vertical axis and its coefficient of variation, age, and sex. Fig. 1 shows the boxplots for the biomechanical selected variables.The model showed 90.0% and 85.7% accuracy on the training and testing sets, respectively. The precision of 100%, recall of 71%, and f1-score 83%, while the precision of 78%, recall of 100%, and f1-score of 88% was obtained on the class without weakness and its counterpart, respectively.The explainability analysis showed that age, Wvert and Whip were the three most important variables in predicting weakness in absolute terms. Sex resulted being the least important variable. Picture 1 - \"Boxplot of the biomechanical selected features according to the weakness condition\"Download : Download high-res image (71KB)Download : Download full-size image Measures of HGS are associated with deficits in several physical functions. In a population-based setting, we identified biomechanical features from 5STS related to stability that could help predict weakness in a free-living environment.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable machine learning approach on biomechanical features to identify weakness in a population-based setting on aging\",\"authors\":\"Mariapia Musci, Simona Aresta, Francesco Bottiglione, Michele Ruta, Tommaso Di Noia, Rodolfo Sardone, Ilaria Bortone\",\"doi\":\"10.1016/j.gaitpost.2023.07.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weakness, as measured by maximal Hand Grip Strength (HGS), represents one of the five criteria used in Fried's definition of frailty [1] and is associated with a wide range of health conditions, which makes it challenging to delineate what body system processes are responsible for weakness. [2]. Still, poor studies have investigated the associations between HGS and dynamic functional assessments [3]. To identify a pattern of functional characteristics, extracted from the 5-repetitions-sit-to-stand (5STS) test biomechanical signals best predict weakness. An Explanation approach to a Machine Learning model was also used. In a subcohort of the longitudinal study of aging [4], 86 subjects over 65 performed the 5STS test [5,6]. They were equipped with an IMU on the L5 vertebra and four sEMG probes (BTS Bioengineering) on the Gastrocnemius Medialis and Tibialis Anterior both side muscles. Several kinematic and muscular features were extracted from the cycle, standing and sitting phases. A handgrip dynamometer was used to measure HGS. Men and women who were considered weak had HGS<26 kg and <16 kg, respectively. Socio-demographic information (age, sex and BMI) was also included. The final dataset consisted of 119 features for all subjects. We first performed the undersampling of the majority class (without weakness); then the dataset was divided into 70% training and 30% testing and normalised using the z-score method. Because of the curse of dimensionality, a pipeline for feature selection and hyperparameter tuning, using the GridSearchCV method, was defined to obtain the best Kernel-SVM model. The best model was chosen according to the accuracy score. To evaluate our model accuracy, precision and recall were calculated. All the analyses were performed using the Scikit-Learn library [7] with Python 3.6. To explain our model Python's SHAP library was used [8]. From the hyperparameter tuning, we obtained six features: hip power (Whip), power along the vertical axis (Wvert), and cycle jerk along the vertical axis and its coefficient of variation, age, and sex. Fig. 1 shows the boxplots for the biomechanical selected variables.The model showed 90.0% and 85.7% accuracy on the training and testing sets, respectively. The precision of 100%, recall of 71%, and f1-score 83%, while the precision of 78%, recall of 100%, and f1-score of 88% was obtained on the class without weakness and its counterpart, respectively.The explainability analysis showed that age, Wvert and Whip were the three most important variables in predicting weakness in absolute terms. Sex resulted being the least important variable. Picture 1 - \\\"Boxplot of the biomechanical selected features according to the weakness condition\\\"Download : Download high-res image (71KB)Download : Download full-size image Measures of HGS are associated with deficits in several physical functions. In a population-based setting, we identified biomechanical features from 5STS related to stability that could help predict weakness in a free-living environment.\",\"PeriodicalId\":94018,\"journal\":{\"name\":\"Gait & posture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gait & posture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gaitpost.2023.07.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gait & posture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gaitpost.2023.07.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虚弱,用最大握力(HGS)来衡量,是弗里德对虚弱的定义中使用的五个标准之一[1],并且与广泛的健康状况有关,这使得描述导致虚弱的身体系统过程具有挑战性。[2]. 然而,很少有研究调查HGS与动态功能评估之间的关系[3]。为了确定一种功能特征模式,从5次重复的坐立(5STS)测试中提取生物力学信号,最好地预测弱点。还使用了机器学习模型的解释方法。在老龄化纵向研究的亚队列研究中[4],86名65岁以上的受试者进行了5STS测试[5,6]。他们在L5椎体上安装了一个IMU,在两侧腓肠肌内侧肌和胫骨前肌上安装了四个sEMG探针(BTS Bioengineering)。从循环、站立和坐姿阶段提取了几个运动学和肌肉特征。用握力计测量HGS。被认为较弱的男性和女性的HGS分别<26 kg和<16 kg。社会人口统计信息(年龄、性别和体重指数)也包括在内。最终的数据集包括所有受试者的119个特征。我们首先对大多数类进行欠采样(没有弱点);然后将数据集分为70%的训练和30%的测试,并使用z-score方法进行归一化。针对核支持向量机的维数问题,利用GridSearchCV方法定义了一个特征选择和超参数调优的管道,以获得最佳的核支持向量机模型。根据准确率评分选择最佳模型。为了评估我们的模型的准确性,我们计算了精密度和召回率。所有分析均使用Scikit-Learn库[7]和Python 3.6进行。为了解释我们的模型,使用了Python的SHAP库[8]。从超参数调谐中,我们获得了六个特征:髋部力量(Whip),沿垂直轴的力量(Wvert)和沿垂直轴的周期抽搐及其变异系数,年龄和性别。图1显示了生物力学选择变量的箱形图。该模型在训练集和测试集上的准确率分别为90.0%和85.7%。无弱点分类的准确率为100%,召回率为71%,f1-score为83%,无弱点分类的准确率为78%,召回率为100%,f1-score为88%。可解释性分析表明,年龄、Wvert和Whip是预测虚弱的三个最重要的绝对变量。性别结果是最不重要的变量。图1 -“根据弱点条件选择的生物力学特征箱线图”下载:下载高分辨率图像(71KB)下载:下载全尺寸图像HGS的测量与几种身体功能的缺陷有关。在以人群为基础的环境中,我们从5STS中识别出与稳定性相关的生物力学特征,这些特征可以帮助预测自由生活环境中的弱点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Explainable machine learning approach on biomechanical features to identify weakness in a population-based setting on aging
Weakness, as measured by maximal Hand Grip Strength (HGS), represents one of the five criteria used in Fried's definition of frailty [1] and is associated with a wide range of health conditions, which makes it challenging to delineate what body system processes are responsible for weakness. [2]. Still, poor studies have investigated the associations between HGS and dynamic functional assessments [3]. To identify a pattern of functional characteristics, extracted from the 5-repetitions-sit-to-stand (5STS) test biomechanical signals best predict weakness. An Explanation approach to a Machine Learning model was also used. In a subcohort of the longitudinal study of aging [4], 86 subjects over 65 performed the 5STS test [5,6]. They were equipped with an IMU on the L5 vertebra and four sEMG probes (BTS Bioengineering) on the Gastrocnemius Medialis and Tibialis Anterior both side muscles. Several kinematic and muscular features were extracted from the cycle, standing and sitting phases. A handgrip dynamometer was used to measure HGS. Men and women who were considered weak had HGS<26 kg and <16 kg, respectively. Socio-demographic information (age, sex and BMI) was also included. The final dataset consisted of 119 features for all subjects. We first performed the undersampling of the majority class (without weakness); then the dataset was divided into 70% training and 30% testing and normalised using the z-score method. Because of the curse of dimensionality, a pipeline for feature selection and hyperparameter tuning, using the GridSearchCV method, was defined to obtain the best Kernel-SVM model. The best model was chosen according to the accuracy score. To evaluate our model accuracy, precision and recall were calculated. All the analyses were performed using the Scikit-Learn library [7] with Python 3.6. To explain our model Python's SHAP library was used [8]. From the hyperparameter tuning, we obtained six features: hip power (Whip), power along the vertical axis (Wvert), and cycle jerk along the vertical axis and its coefficient of variation, age, and sex. Fig. 1 shows the boxplots for the biomechanical selected variables.The model showed 90.0% and 85.7% accuracy on the training and testing sets, respectively. The precision of 100%, recall of 71%, and f1-score 83%, while the precision of 78%, recall of 100%, and f1-score of 88% was obtained on the class without weakness and its counterpart, respectively.The explainability analysis showed that age, Wvert and Whip were the three most important variables in predicting weakness in absolute terms. Sex resulted being the least important variable. Picture 1 - "Boxplot of the biomechanical selected features according to the weakness condition"Download : Download high-res image (71KB)Download : Download full-size image Measures of HGS are associated with deficits in several physical functions. In a population-based setting, we identified biomechanical features from 5STS related to stability that could help predict weakness in a free-living environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of medial longitudinal arch flexibility on lower limb joint coupling coordination and gait impulse. Mechanisms of gait speed changes in middle-aged adults: Simultaneous analysis of magnitude and temporal effects. The effects of cognitive-motor interference on walking performance in adolescents with low balance. How reliable are femoropelvic kinematics during deep squats? The influence of subject-specific skeletal modelling on measurement variability. Proprioceptive-perception threshold is impaired in cerebral palsy and is associated with worse balance performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1