Robert Reisig, Mehrdad Davoudi, Marco Götze, Firooz Salami, Sebastian Wolf
{"title":"应用德尔菲过程客观化肌电图在脑瘫治疗中的系统应用","authors":"Robert Reisig, Mehrdad Davoudi, Marco Götze, Firooz Salami, Sebastian Wolf","doi":"10.1016/j.gaitpost.2023.07.208","DOIUrl":null,"url":null,"abstract":"Cerebral Palsy (CP) is a neurodevelopmental disorder that affects motor function and coordination. While there is no curative treatment, various methods, surgical and conservative, can be used to optimize patients' physical performance. [1] Treatment planning involves physical examination, imaging, and gait analysis. [2] Despite being the only method apart from physical examination to assess muscle weakness and spasticity, the role of EMG data in decision-making is little understood. [3] However, it can be efficient to perform and could substantially improve treatment decision trees. [4] This Delphi Process complements a data driven approach with identical research goals so that findings of both can be integrated. How can EMG enhance diagnostic and therapeutic methods for patients with CP? Our objectives include identifying key EMG data features that advance decision-making processes and determining the most appropriate and impactful descriptors for data evaluation. Additionally, present-day utilization is being investigated. A Delphi Process is being employed, engaging an initial panel of 53 experts in gait analysis. Of these, 44 have agreed to continue their participation in the project. These experts were selected based on their affiliation with ESMAC and referrals from other participants. In the first round, panelists were asked about their current or past use of EMG in gait analysis for patients with CP. Questions covered the topics effectiveness, reliability, assessed muscles, data processing, decision-making processes involving EMG data, use of normative data, and descriptors being used to evaluate EMG. Participants will receive the evaluated results from the previous rounds and may base their decisions on this information. The second round is scheduled to begin by the end of April 2023. The third round is planned for completion and evaluation before ESMAC in September 2023. The Delphi Process is currently underway, and the first round has been completed. 90% of participants found EMG information in the context of CP to be at least somewhat helpful, and 79% considered it at least somewhat reliable. While at least 32% of participants rely solely on raw data, more than 21% solely use enveloped data. The muscles predominantly used for decision processes are rectus femoris and tibialis anterior. Statistic assessed musclesDownload : Download high-res image (86KB)Download : Download full-size image The most widespread descriptors used include 'delayed,' 'prolonged,' 'premature,' 'cocontraction,' 'out of phase,' 'absent,' 'early' and 'continuous. Current results show predominant consensus about helpfulness and reliability of EMG data in the context of CP. Simultaneously, there seem to be two major approaches in data evaluation – one using raw data and the other using envelopes. In future rounds of the process we aim to collect treatment decision trees from experts which are based on EMG data – may they be driven by experience or evidence – and try to replicate these decision trees by purely data driven approaches.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Delphi Process is being applied to objectify the systematic use of EMG in therapy of Cerebral Palsy\",\"authors\":\"Robert Reisig, Mehrdad Davoudi, Marco Götze, Firooz Salami, Sebastian Wolf\",\"doi\":\"10.1016/j.gaitpost.2023.07.208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cerebral Palsy (CP) is a neurodevelopmental disorder that affects motor function and coordination. While there is no curative treatment, various methods, surgical and conservative, can be used to optimize patients' physical performance. [1] Treatment planning involves physical examination, imaging, and gait analysis. [2] Despite being the only method apart from physical examination to assess muscle weakness and spasticity, the role of EMG data in decision-making is little understood. [3] However, it can be efficient to perform and could substantially improve treatment decision trees. [4] This Delphi Process complements a data driven approach with identical research goals so that findings of both can be integrated. How can EMG enhance diagnostic and therapeutic methods for patients with CP? Our objectives include identifying key EMG data features that advance decision-making processes and determining the most appropriate and impactful descriptors for data evaluation. Additionally, present-day utilization is being investigated. A Delphi Process is being employed, engaging an initial panel of 53 experts in gait analysis. Of these, 44 have agreed to continue their participation in the project. These experts were selected based on their affiliation with ESMAC and referrals from other participants. In the first round, panelists were asked about their current or past use of EMG in gait analysis for patients with CP. Questions covered the topics effectiveness, reliability, assessed muscles, data processing, decision-making processes involving EMG data, use of normative data, and descriptors being used to evaluate EMG. Participants will receive the evaluated results from the previous rounds and may base their decisions on this information. The second round is scheduled to begin by the end of April 2023. The third round is planned for completion and evaluation before ESMAC in September 2023. The Delphi Process is currently underway, and the first round has been completed. 90% of participants found EMG information in the context of CP to be at least somewhat helpful, and 79% considered it at least somewhat reliable. While at least 32% of participants rely solely on raw data, more than 21% solely use enveloped data. The muscles predominantly used for decision processes are rectus femoris and tibialis anterior. Statistic assessed musclesDownload : Download high-res image (86KB)Download : Download full-size image The most widespread descriptors used include 'delayed,' 'prolonged,' 'premature,' 'cocontraction,' 'out of phase,' 'absent,' 'early' and 'continuous. Current results show predominant consensus about helpfulness and reliability of EMG data in the context of CP. Simultaneously, there seem to be two major approaches in data evaluation – one using raw data and the other using envelopes. In future rounds of the process we aim to collect treatment decision trees from experts which are based on EMG data – may they be driven by experience or evidence – and try to replicate these decision trees by purely data driven approaches.\",\"PeriodicalId\":94018,\"journal\":{\"name\":\"Gait & posture\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gait & posture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gaitpost.2023.07.208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gait & posture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gaitpost.2023.07.208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Delphi Process is being applied to objectify the systematic use of EMG in therapy of Cerebral Palsy
Cerebral Palsy (CP) is a neurodevelopmental disorder that affects motor function and coordination. While there is no curative treatment, various methods, surgical and conservative, can be used to optimize patients' physical performance. [1] Treatment planning involves physical examination, imaging, and gait analysis. [2] Despite being the only method apart from physical examination to assess muscle weakness and spasticity, the role of EMG data in decision-making is little understood. [3] However, it can be efficient to perform and could substantially improve treatment decision trees. [4] This Delphi Process complements a data driven approach with identical research goals so that findings of both can be integrated. How can EMG enhance diagnostic and therapeutic methods for patients with CP? Our objectives include identifying key EMG data features that advance decision-making processes and determining the most appropriate and impactful descriptors for data evaluation. Additionally, present-day utilization is being investigated. A Delphi Process is being employed, engaging an initial panel of 53 experts in gait analysis. Of these, 44 have agreed to continue their participation in the project. These experts were selected based on their affiliation with ESMAC and referrals from other participants. In the first round, panelists were asked about their current or past use of EMG in gait analysis for patients with CP. Questions covered the topics effectiveness, reliability, assessed muscles, data processing, decision-making processes involving EMG data, use of normative data, and descriptors being used to evaluate EMG. Participants will receive the evaluated results from the previous rounds and may base their decisions on this information. The second round is scheduled to begin by the end of April 2023. The third round is planned for completion and evaluation before ESMAC in September 2023. The Delphi Process is currently underway, and the first round has been completed. 90% of participants found EMG information in the context of CP to be at least somewhat helpful, and 79% considered it at least somewhat reliable. While at least 32% of participants rely solely on raw data, more than 21% solely use enveloped data. The muscles predominantly used for decision processes are rectus femoris and tibialis anterior. Statistic assessed musclesDownload : Download high-res image (86KB)Download : Download full-size image The most widespread descriptors used include 'delayed,' 'prolonged,' 'premature,' 'cocontraction,' 'out of phase,' 'absent,' 'early' and 'continuous. Current results show predominant consensus about helpfulness and reliability of EMG data in the context of CP. Simultaneously, there seem to be two major approaches in data evaluation – one using raw data and the other using envelopes. In future rounds of the process we aim to collect treatment decision trees from experts which are based on EMG data – may they be driven by experience or evidence – and try to replicate these decision trees by purely data driven approaches.