{"title":"小升力运载火箭造成电离层耗损的数值模拟和GNSS观测","authors":"G. W. Bowden, M. Brown","doi":"10.1029/2023sw003563","DOIUrl":null,"url":null,"abstract":"Abstract Space launches produce ionospheric disturbances which can be observed through measurements such as Global Navigation Satellite System signal delays. Here we report observations and numerical simulations of the ionospheric depletion due to a Small‐Lift Launch Vehicle. The case examined was the launch of a Rocket Lab Electron at 22:30 UTC on 22 March 2021. Despite the very small launch vehicle, ground stations in the Chatham Islands measured decreases in slant total electron content for navigation satellite signals following the launch. Global Ionosphere Thermosphere Model results indicated ionospheric depletions which were comparable with these measurements. Measurements indicated a maximum decrease of 2.7 TECU in vertical total electron content, compared with a simulated decrease of 2.6 TECU. Advection of the exhaust plume due to its initial velocity and subsequent effects of neutral winds are identified as some remaining challenges for this form of modeling.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"41 1","pages":"0"},"PeriodicalIF":3.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Modeling and GNSS Observations of Ionospheric Depletions Due To a Small‐Lift Launch Vehicle\",\"authors\":\"G. W. Bowden, M. Brown\",\"doi\":\"10.1029/2023sw003563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Space launches produce ionospheric disturbances which can be observed through measurements such as Global Navigation Satellite System signal delays. Here we report observations and numerical simulations of the ionospheric depletion due to a Small‐Lift Launch Vehicle. The case examined was the launch of a Rocket Lab Electron at 22:30 UTC on 22 March 2021. Despite the very small launch vehicle, ground stations in the Chatham Islands measured decreases in slant total electron content for navigation satellite signals following the launch. Global Ionosphere Thermosphere Model results indicated ionospheric depletions which were comparable with these measurements. Measurements indicated a maximum decrease of 2.7 TECU in vertical total electron content, compared with a simulated decrease of 2.6 TECU. Advection of the exhaust plume due to its initial velocity and subsequent effects of neutral winds are identified as some remaining challenges for this form of modeling.\",\"PeriodicalId\":49487,\"journal\":{\"name\":\"Space Weather-The International Journal of Research and Applications\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Weather-The International Journal of Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2023sw003563\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather-The International Journal of Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023sw003563","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Numerical Modeling and GNSS Observations of Ionospheric Depletions Due To a Small‐Lift Launch Vehicle
Abstract Space launches produce ionospheric disturbances which can be observed through measurements such as Global Navigation Satellite System signal delays. Here we report observations and numerical simulations of the ionospheric depletion due to a Small‐Lift Launch Vehicle. The case examined was the launch of a Rocket Lab Electron at 22:30 UTC on 22 March 2021. Despite the very small launch vehicle, ground stations in the Chatham Islands measured decreases in slant total electron content for navigation satellite signals following the launch. Global Ionosphere Thermosphere Model results indicated ionospheric depletions which were comparable with these measurements. Measurements indicated a maximum decrease of 2.7 TECU in vertical total electron content, compared with a simulated decrease of 2.6 TECU. Advection of the exhaust plume due to its initial velocity and subsequent effects of neutral winds are identified as some remaining challenges for this form of modeling.
期刊介绍:
Space Weather: The International Journal of Research and Applications (SWE) is devoted to understanding and forecasting space weather. The scope of understanding and forecasting includes: origins, propagation and interactions of solar-produced processes within geospace; interactions in Earth’s space-atmosphere interface region produced by disturbances from above and below; influences of cosmic rays on humans, hardware, and signals; and comparisons of these types of interactions and influences with the atmospheres of neighboring planets and Earth’s moon. Manuscripts should emphasize impacts on technical systems including telecommunications, transportation, electric power, satellite navigation, avionics/spacecraft design and operations, human spaceflight, and other systems. Manuscripts that describe models or space environment climatology should clearly state how the results can be applied.