{"title":"基于标准化降水指数的W-ARIMA模型的干旱预报","authors":"Reza Rezaiy, Ani Shabri","doi":"10.2166/wcc.2023.431","DOIUrl":null,"url":null,"abstract":"Abstract Climate change and water supply shortages are paramount global concerns. Drought, a complex and often underestimated phenomenon, profoundly affects various aspects of human life. Thus, early drought forecasting is crucial for strategic planning and water resource management. This study introduces a novel hybrid model, combining wavelet transform with the Autoregressive Integrated Moving Average (ARIMA) model, known as Wavelet ARIMA (W-ARIMA), to enhance drought prediction accuracy. We meticulously analyze monthly precipitation data from January 1970 to December 2019 in Kabul, Afghanistan, focusing on multiple time scales (SPI 3, SPI 6, SPI 9, SPI 12). Comparative assessment against the conventional ARIMA approach reveals the superior performance of our W-ARIMA model. Key statistical indicators, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), underscore the improvements achieved by the W-ARIMA model, notably in SPI 12 forecasting. Additionally, we evaluate performance using metrics like R-square, NSE, PBIAS, and KGE, consistently demonstrating the W-ARIMA model's superiority. This substantial enhancement highlights the innovative model's clear superiority in drought forecasting for Kabul, Afghanistan. Our research underscores the critical significance of this hybrid model in addressing the challenges posed by drought within the broader context of climate change and water resource management.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":"44 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drought forecasting using W-ARIMA model with standardized precipitation index\",\"authors\":\"Reza Rezaiy, Ani Shabri\",\"doi\":\"10.2166/wcc.2023.431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Climate change and water supply shortages are paramount global concerns. Drought, a complex and often underestimated phenomenon, profoundly affects various aspects of human life. Thus, early drought forecasting is crucial for strategic planning and water resource management. This study introduces a novel hybrid model, combining wavelet transform with the Autoregressive Integrated Moving Average (ARIMA) model, known as Wavelet ARIMA (W-ARIMA), to enhance drought prediction accuracy. We meticulously analyze monthly precipitation data from January 1970 to December 2019 in Kabul, Afghanistan, focusing on multiple time scales (SPI 3, SPI 6, SPI 9, SPI 12). Comparative assessment against the conventional ARIMA approach reveals the superior performance of our W-ARIMA model. Key statistical indicators, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), underscore the improvements achieved by the W-ARIMA model, notably in SPI 12 forecasting. Additionally, we evaluate performance using metrics like R-square, NSE, PBIAS, and KGE, consistently demonstrating the W-ARIMA model's superiority. This substantial enhancement highlights the innovative model's clear superiority in drought forecasting for Kabul, Afghanistan. Our research underscores the critical significance of this hybrid model in addressing the challenges posed by drought within the broader context of climate change and water resource management.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2023.431\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2023.431","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Drought forecasting using W-ARIMA model with standardized precipitation index
Abstract Climate change and water supply shortages are paramount global concerns. Drought, a complex and often underestimated phenomenon, profoundly affects various aspects of human life. Thus, early drought forecasting is crucial for strategic planning and water resource management. This study introduces a novel hybrid model, combining wavelet transform with the Autoregressive Integrated Moving Average (ARIMA) model, known as Wavelet ARIMA (W-ARIMA), to enhance drought prediction accuracy. We meticulously analyze monthly precipitation data from January 1970 to December 2019 in Kabul, Afghanistan, focusing on multiple time scales (SPI 3, SPI 6, SPI 9, SPI 12). Comparative assessment against the conventional ARIMA approach reveals the superior performance of our W-ARIMA model. Key statistical indicators, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE), underscore the improvements achieved by the W-ARIMA model, notably in SPI 12 forecasting. Additionally, we evaluate performance using metrics like R-square, NSE, PBIAS, and KGE, consistently demonstrating the W-ARIMA model's superiority. This substantial enhancement highlights the innovative model's clear superiority in drought forecasting for Kabul, Afghanistan. Our research underscores the critical significance of this hybrid model in addressing the challenges posed by drought within the broader context of climate change and water resource management.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.