{"title":"一类非线性最小二乘问题解的唯一性和稳定性","authors":"Meng Huang, Zhiqiang Xu","doi":"10.1090/mcom/3918","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the nonlinear least squares: $\\mbox{min}_{\\mathbf{x} \\in \\mathbb{H}^d}\\| |A\\mathbf{x}|-\\mathbf{b}\\|$ where $A\\in \\mathbb{H}^{m\\times d}$, $\\mathbf{b} \\in \\mathbb{R}^m$ with $\\mathbb{H} \\in \\{\\mathbb{R},\\mathbb{C} \\}$ and consider the uniqueness and stability of solutions. Such problem arises, for instance, in phase retrieval and absolute value rectification neural networks. For the case where $\\mathbf{b}=|A\\mathbf{x}_0|$ for some $\\mathbf{x}_0\\in \\mathbb{H}^d$, many results have been developed to characterize the uniqueness and stability of solutions. However, for the case where $\\mathbf{b} \\neq |A\\mathbf{x}_0| $ for any $\\mathbf{x}_0\\in \\mathbb{H}^d$, there is no existing result for it to the best of our knowledge. In this paper, we first focus on the uniqueness of solutions and show for any matrix $A\\in \\mathbb{H}^{m \\times d}$ there always exists a vector $\\mathbf{b} \\in \\mathbb{R}^m$ such that the solution is not unique. But, in real case, such ``bad'' vectors $\\mathbf{b}$ are negligible, namely, if $\\mathbf{b} \\in \\mathbb{R}_{+}^m$ does not lie in some measure zero set, then the solution is unique. We also present some conditions under which the solution is unique. For the stability of solutions, we prove that the solution is never uniformly stable. But if we restrict the vectors $\\mathbf{b}$ to any convex set then it is stable.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness and stability for the solution of a nonlinear least squares problem\",\"authors\":\"Meng Huang, Zhiqiang Xu\",\"doi\":\"10.1090/mcom/3918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the nonlinear least squares: $\\\\mbox{min}_{\\\\mathbf{x} \\\\in \\\\mathbb{H}^d}\\\\| |A\\\\mathbf{x}|-\\\\mathbf{b}\\\\|$ where $A\\\\in \\\\mathbb{H}^{m\\\\times d}$, $\\\\mathbf{b} \\\\in \\\\mathbb{R}^m$ with $\\\\mathbb{H} \\\\in \\\\{\\\\mathbb{R},\\\\mathbb{C} \\\\}$ and consider the uniqueness and stability of solutions. Such problem arises, for instance, in phase retrieval and absolute value rectification neural networks. For the case where $\\\\mathbf{b}=|A\\\\mathbf{x}_0|$ for some $\\\\mathbf{x}_0\\\\in \\\\mathbb{H}^d$, many results have been developed to characterize the uniqueness and stability of solutions. However, for the case where $\\\\mathbf{b} \\\\neq |A\\\\mathbf{x}_0| $ for any $\\\\mathbf{x}_0\\\\in \\\\mathbb{H}^d$, there is no existing result for it to the best of our knowledge. In this paper, we first focus on the uniqueness of solutions and show for any matrix $A\\\\in \\\\mathbb{H}^{m \\\\times d}$ there always exists a vector $\\\\mathbf{b} \\\\in \\\\mathbb{R}^m$ such that the solution is not unique. But, in real case, such ``bad'' vectors $\\\\mathbf{b}$ are negligible, namely, if $\\\\mathbf{b} \\\\in \\\\mathbb{R}_{+}^m$ does not lie in some measure zero set, then the solution is unique. We also present some conditions under which the solution is unique. For the stability of solutions, we prove that the solution is never uniformly stable. But if we restrict the vectors $\\\\mathbf{b}$ to any convex set then it is stable.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本文主要研究非线性最小二乘法:$\mbox{min}_{\mathbf{x} \ In \mathbb{H}^d}\| A\mathbf{x}|-\mathbf{b}\|$其中$A\ mathbb{H}^{m\乘以d}$, $\mathbf{b} \ In \mathbb{R}^m$与$\mathbb{H} \ In \mathbb{R},\mathbb{C} \}$,并考虑解的唯一性和稳定性。例如,在相位检索和绝对值校正神经网络中就会出现这样的问题。对于$\mathbf{b}=|A\mathbf{x}_0|$对于\mathbb{H}^d$中的$\mathbf{x}_0\的情况,已经开发了许多结果来表征解的唯一性和稳定性。然而,对于$\mathbf{b} \neq |A\mathbf{x}_0| $对于\mathbb{H}^d$中的任何$\mathbf{x}_0\ $的情况,据我们所知,它没有现有的结果。在本文中,我们首先关注解的唯一性,并证明对于任意矩阵$A\ \mathbb{H}^{m \乘以d}$,总存在一个向量$\mathbf{b} \ \在\mathbb{R}^m$中使得解不唯一。但是,在实际情况中,这样的“坏”向量$\mathbf{b}$是可以忽略不计的,也就是说,如果$\mathbf{b} \在\mathbb{R}_{+}^m$中不存在于某个度量零集中,那么解是唯一的。我们还给出了解唯一的一些条件。对于解的稳定性,我们证明了解绝不是一致稳定的。但是如果我们限制向量$\mathbf{b}$到任意凸集,那么它是稳定的。
Uniqueness and stability for the solution of a nonlinear least squares problem
In this paper, we focus on the nonlinear least squares: $\mbox{min}_{\mathbf{x} \in \mathbb{H}^d}\| |A\mathbf{x}|-\mathbf{b}\|$ where $A\in \mathbb{H}^{m\times d}$, $\mathbf{b} \in \mathbb{R}^m$ with $\mathbb{H} \in \{\mathbb{R},\mathbb{C} \}$ and consider the uniqueness and stability of solutions. Such problem arises, for instance, in phase retrieval and absolute value rectification neural networks. For the case where $\mathbf{b}=|A\mathbf{x}_0|$ for some $\mathbf{x}_0\in \mathbb{H}^d$, many results have been developed to characterize the uniqueness and stability of solutions. However, for the case where $\mathbf{b} \neq |A\mathbf{x}_0| $ for any $\mathbf{x}_0\in \mathbb{H}^d$, there is no existing result for it to the best of our knowledge. In this paper, we first focus on the uniqueness of solutions and show for any matrix $A\in \mathbb{H}^{m \times d}$ there always exists a vector $\mathbf{b} \in \mathbb{R}^m$ such that the solution is not unique. But, in real case, such ``bad'' vectors $\mathbf{b}$ are negligible, namely, if $\mathbf{b} \in \mathbb{R}_{+}^m$ does not lie in some measure zero set, then the solution is unique. We also present some conditions under which the solution is unique. For the stability of solutions, we prove that the solution is never uniformly stable. But if we restrict the vectors $\mathbf{b}$ to any convex set then it is stable.