{"title":"氯甲烷(CH<sub>3</sub>Cl)与Fe(110)表面的纳米级相互作用范德华计算","authors":"Sherin A. Saraireh","doi":"10.1380/ejssnt.2023-062","DOIUrl":null,"url":null,"abstract":"A report of nano-scale interaction of chloromethane (methyl chloride) (CH3Cl) with the Fe(110) surface; van der Waals density functional theory (DFT) study. Physisorption of a CH3Cl molecule via changing the site and orientation of the molecule was studied on the Fe(100) surface using DFT. All reasonable molecular and dissociative adsorption routes of the CH3Cl molecule on the Fe(100) surface have been systematically investigated. Molecular adsorption was considered on four different surface sites with different orientations with Cl, C, and H atoms toward and away from the surface. Chemisorption was considered by decomposition of CH3Cl into a methyl (CH3) group and a Cl atom via a cleavage of the C–Cl bond and by decomposition into a CH2Cl group and a H atom via a cleavage one of the C–H bonds. Chemisorption produces a greater degree of bonding than physisorption.","PeriodicalId":11626,"journal":{"name":"E-journal of Surface Science and Nanotechnology","volume":"18 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-scale Interaction of Chloromethane (CH<sub>3</sub>Cl) with the Fe(110) Surface; A van der Waals Calculation\",\"authors\":\"Sherin A. Saraireh\",\"doi\":\"10.1380/ejssnt.2023-062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A report of nano-scale interaction of chloromethane (methyl chloride) (CH3Cl) with the Fe(110) surface; van der Waals density functional theory (DFT) study. Physisorption of a CH3Cl molecule via changing the site and orientation of the molecule was studied on the Fe(100) surface using DFT. All reasonable molecular and dissociative adsorption routes of the CH3Cl molecule on the Fe(100) surface have been systematically investigated. Molecular adsorption was considered on four different surface sites with different orientations with Cl, C, and H atoms toward and away from the surface. Chemisorption was considered by decomposition of CH3Cl into a methyl (CH3) group and a Cl atom via a cleavage of the C–Cl bond and by decomposition into a CH2Cl group and a H atom via a cleavage one of the C–H bonds. Chemisorption produces a greater degree of bonding than physisorption.\",\"PeriodicalId\":11626,\"journal\":{\"name\":\"E-journal of Surface Science and Nanotechnology\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"E-journal of Surface Science and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1380/ejssnt.2023-062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-journal of Surface Science and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1380/ejssnt.2023-062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Nano-scale Interaction of Chloromethane (CH<sub>3</sub>Cl) with the Fe(110) Surface; A van der Waals Calculation
A report of nano-scale interaction of chloromethane (methyl chloride) (CH3Cl) with the Fe(110) surface; van der Waals density functional theory (DFT) study. Physisorption of a CH3Cl molecule via changing the site and orientation of the molecule was studied on the Fe(100) surface using DFT. All reasonable molecular and dissociative adsorption routes of the CH3Cl molecule on the Fe(100) surface have been systematically investigated. Molecular adsorption was considered on four different surface sites with different orientations with Cl, C, and H atoms toward and away from the surface. Chemisorption was considered by decomposition of CH3Cl into a methyl (CH3) group and a Cl atom via a cleavage of the C–Cl bond and by decomposition into a CH2Cl group and a H atom via a cleavage one of the C–H bonds. Chemisorption produces a greater degree of bonding than physisorption.
期刊介绍:
Our completely electronic and open-access journal aims at quick and versatile-style publication of research papers on fundamental theory and experiments at frontiers of science and technology relating to surfaces, interfaces, thin films, fine particles, nanowires, nanotubes, and other nanometer-scale structures, and their interdisciplinary areas such as crystal growth, vacuum technology, and so on. It covers their physics, chemistry, biology, materials science, and their applications to advanced technology for computations, communications, memory, catalysis, sensors, biological and medical purposes, energy and environmental problems, and so on.