随机系数随机前沿模型的函数形式规范问题

IF 2.3 4区 经济学 Q3 BUSINESS Journal of Productivity Analysis Pub Date : 2023-09-16 DOI:10.1007/s11123-023-00700-4
Ioannis Skevas
{"title":"随机系数随机前沿模型的函数形式规范问题","authors":"Ioannis Skevas","doi":"10.1007/s11123-023-00700-4","DOIUrl":null,"url":null,"abstract":"Abstract This study presents a random coefficients stochastic frontier model that can accommodate the flexible translog functional form without being computationally demanding and thus time consuming to estimate. This is achieved by restricting the second-order frontier parameters to be common to all firms. For comparison, random coefficients stochastic frontier models with Cobb–Douglas, semi-translog and translog specifications with all parameters being firm-specific are estimated. The models are applied to an unbalanced panel of German dairy farms, and Bayesian techniques are used for the estimation. The results suggest that the time needed for the sampler to complete in the proposed model reduces dramatically as opposed to a translog model where all parameters are firm-specific. The elasticities exhibit some differences, depending on the choice of functional form, whilst the efficiency scores are less affected. Bayes factors suggest that the proposed model fits the data best.","PeriodicalId":16870,"journal":{"name":"Journal of Productivity Analysis","volume":"19 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on functional form specification in random coefficients stochastic frontier models\",\"authors\":\"Ioannis Skevas\",\"doi\":\"10.1007/s11123-023-00700-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study presents a random coefficients stochastic frontier model that can accommodate the flexible translog functional form without being computationally demanding and thus time consuming to estimate. This is achieved by restricting the second-order frontier parameters to be common to all firms. For comparison, random coefficients stochastic frontier models with Cobb–Douglas, semi-translog and translog specifications with all parameters being firm-specific are estimated. The models are applied to an unbalanced panel of German dairy farms, and Bayesian techniques are used for the estimation. The results suggest that the time needed for the sampler to complete in the proposed model reduces dramatically as opposed to a translog model where all parameters are firm-specific. The elasticities exhibit some differences, depending on the choice of functional form, whilst the efficiency scores are less affected. Bayes factors suggest that the proposed model fits the data best.\",\"PeriodicalId\":16870,\"journal\":{\"name\":\"Journal of Productivity Analysis\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Productivity Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11123-023-00700-4\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Productivity Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11123-023-00700-4","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文提出了一种随机系数随机前沿模型,该模型可以适应灵活的超对数函数形式,而不需要计算量和估计时间。这是通过将二阶边界参数限制为所有企业的共同参数来实现的。为了比较,估计了所有参数都是企业特定的Cobb-Douglas、半超对数和超对数规范的随机系数随机前沿模型。该模型应用于德国奶牛场的不平衡面板,并使用贝叶斯技术进行估计。结果表明,与所有参数都特定于公司的超对数模型相比,在所提出的模型中完成采样器所需的时间大大减少。弹性表现出一些差异,取决于功能形式的选择,而效率得分的影响较小。贝叶斯因素表明,所提出的模型拟合数据最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A note on functional form specification in random coefficients stochastic frontier models
Abstract This study presents a random coefficients stochastic frontier model that can accommodate the flexible translog functional form without being computationally demanding and thus time consuming to estimate. This is achieved by restricting the second-order frontier parameters to be common to all firms. For comparison, random coefficients stochastic frontier models with Cobb–Douglas, semi-translog and translog specifications with all parameters being firm-specific are estimated. The models are applied to an unbalanced panel of German dairy farms, and Bayesian techniques are used for the estimation. The results suggest that the time needed for the sampler to complete in the proposed model reduces dramatically as opposed to a translog model where all parameters are firm-specific. The elasticities exhibit some differences, depending on the choice of functional form, whilst the efficiency scores are less affected. Bayes factors suggest that the proposed model fits the data best.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
6.20%
发文量
30
期刊介绍: The Journal of Productivity Analysis publishes theoretical and applied research that addresses issues involving the measurement, explanation, and improvement of productivity. The broad scope of the journal encompasses productivity-related developments spanning the disciplines of economics, the management sciences, operations research, and business and public administration. Topics covered in the journal include, but are not limited to, productivity theory, organizational design, index number theory, and related foundations of productivity analysis. The journal also publishes research on computational methods that are employed in productivity analysis, including econometric and mathematical programming techniques, and empirical research based on data at all levels of aggregation, ranging from aggregate macroeconomic data to disaggregate microeconomic data. The empirical research illustrates the application of theory and techniques to the measurement of productivity, and develops implications for the design of managerial strategies and public policy to enhance productivity. Officially cited as: J Prod Anal
期刊最新文献
Constant returns-to-scale production technologies with fixed ratio inputs and outputs Productivity, investment slowdown, and misallocation: evidence from Indian manufacturing To chain or not to chain? measuring real GDP in the US and the choice of index number The inefficiency of courts of justice: industry structure, capacity and misallocation Approximations and inference for envelopment estimators of production frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1