{"title":"一类近凸调和映射的Bohr-Rogosinski半径","authors":"MOLLA BASIR AHAMED, VASUDEVARAO ALLU","doi":"10.4153/s0008439523000115","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$ \\mathcal {B} $\n be the class of analytic functions \n$ f $\n in the unit disk \n$ \\mathbb {D}=\\{z\\in \\mathbb {C} : |z|<1\\} $\n such that \n$ |f(z)|<1 $\n for all \n$ z\\in \\mathbb {D} $\n . If \n$ f\\in \\mathcal {B} $\n of the form \n$ f(z)=\\sum _{n=0}^{\\infty }a_nz^n $\n , then \n$ \\sum _{n=0}^{\\infty }|a_nz^n|\\leq 1 $\n for \n$ |z|=r\\leq 1/3 $\n and \n$ 1/3 $\n cannot be improved. This inequality is called Bohr inequality and the quantity \n$ 1/3 $\n is called Bohr radius. If \n$ f\\in \\mathcal {B} $\n of the form \n$ f(z)=\\sum _{n=0}^{\\infty }a_nz^n $\n , then \n$ |\\sum _{n=0}^{N}a_nz^n|<1\\;\\; \\mbox {for}\\;\\; |z|<{1}/{2} $\n and the radius \n$ 1/2 $\n is the best possible for the class \n$ \\mathcal {B} $\n . This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let \n$ \\mathcal {H} $\n be the class of all complex-valued harmonic functions \n$ f=h+\\bar {g} $\n defined on the unit disk \n$ \\mathbb {D} $\n , where \n$ h $\n and \n$ g $\n are analytic in \n$ \\mathbb {D} $\n with the normalization \n$ h(0)=h^{\\prime }(0)-1=0 $\n and \n$ g(0)=0 $\n . Let \n$ \\mathcal {H}_0=\\{f=h+\\bar {g}\\in \\mathcal {H} : g^{\\prime }(0)=0\\}. $\n For \n$ \\alpha \\geq 0 $\n and \n$ 0\\leq \\beta <1 $\n , let \n$$ \\begin{align*} \\mathcal{W}^{0}_{\\mathcal{H}}(\\alpha, \\beta)=\\{f=h+\\overline{g}\\in\\mathcal{H}_{0} : \\mathrm{Re}\\left(h^{\\prime}(z)+\\alpha zh^{\\prime\\prime}(z)-\\beta\\right)>|g^{\\prime}(z)+\\alpha zg^{\\prime\\prime}(z)|,\\;\\; z\\in\\mathbb{D}\\} \\end{align*} $$\n be a class of close-to-convex harmonic mappings in \n$ \\mathbb {D} $\n . In this paper, we prove the sharp Bohr–Rogosinski radius for the class \n$ \\mathcal {W}^{0}_{\\mathcal {H}}(\\alpha , \\beta ) $\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bohr–Rogosinski radius for a certain class of close-to-convex harmonic mappings\",\"authors\":\"MOLLA BASIR AHAMED, VASUDEVARAO ALLU\",\"doi\":\"10.4153/s0008439523000115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$ \\\\mathcal {B} $\\n be the class of analytic functions \\n$ f $\\n in the unit disk \\n$ \\\\mathbb {D}=\\\\{z\\\\in \\\\mathbb {C} : |z|<1\\\\} $\\n such that \\n$ |f(z)|<1 $\\n for all \\n$ z\\\\in \\\\mathbb {D} $\\n . If \\n$ f\\\\in \\\\mathcal {B} $\\n of the form \\n$ f(z)=\\\\sum _{n=0}^{\\\\infty }a_nz^n $\\n , then \\n$ \\\\sum _{n=0}^{\\\\infty }|a_nz^n|\\\\leq 1 $\\n for \\n$ |z|=r\\\\leq 1/3 $\\n and \\n$ 1/3 $\\n cannot be improved. This inequality is called Bohr inequality and the quantity \\n$ 1/3 $\\n is called Bohr radius. If \\n$ f\\\\in \\\\mathcal {B} $\\n of the form \\n$ f(z)=\\\\sum _{n=0}^{\\\\infty }a_nz^n $\\n , then \\n$ |\\\\sum _{n=0}^{N}a_nz^n|<1\\\\;\\\\; \\\\mbox {for}\\\\;\\\\; |z|<{1}/{2} $\\n and the radius \\n$ 1/2 $\\n is the best possible for the class \\n$ \\\\mathcal {B} $\\n . This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let \\n$ \\\\mathcal {H} $\\n be the class of all complex-valued harmonic functions \\n$ f=h+\\\\bar {g} $\\n defined on the unit disk \\n$ \\\\mathbb {D} $\\n , where \\n$ h $\\n and \\n$ g $\\n are analytic in \\n$ \\\\mathbb {D} $\\n with the normalization \\n$ h(0)=h^{\\\\prime }(0)-1=0 $\\n and \\n$ g(0)=0 $\\n . Let \\n$ \\\\mathcal {H}_0=\\\\{f=h+\\\\bar {g}\\\\in \\\\mathcal {H} : g^{\\\\prime }(0)=0\\\\}. $\\n For \\n$ \\\\alpha \\\\geq 0 $\\n and \\n$ 0\\\\leq \\\\beta <1 $\\n , let \\n$$ \\\\begin{align*} \\\\mathcal{W}^{0}_{\\\\mathcal{H}}(\\\\alpha, \\\\beta)=\\\\{f=h+\\\\overline{g}\\\\in\\\\mathcal{H}_{0} : \\\\mathrm{Re}\\\\left(h^{\\\\prime}(z)+\\\\alpha zh^{\\\\prime\\\\prime}(z)-\\\\beta\\\\right)>|g^{\\\\prime}(z)+\\\\alpha zg^{\\\\prime\\\\prime}(z)|,\\\\;\\\\; z\\\\in\\\\mathbb{D}\\\\} \\\\end{align*} $$\\n be a class of close-to-convex harmonic mappings in \\n$ \\\\mathbb {D} $\\n . In this paper, we prove the sharp Bohr–Rogosinski radius for the class \\n$ \\\\mathcal {W}^{0}_{\\\\mathcal {H}}(\\\\alpha , \\\\beta ) $\\n .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bohr–Rogosinski radius for a certain class of close-to-convex harmonic mappings
Abstract Let
$ \mathcal {B} $
be the class of analytic functions
$ f $
in the unit disk
$ \mathbb {D}=\{z\in \mathbb {C} : |z|<1\} $
such that
$ |f(z)|<1 $
for all
$ z\in \mathbb {D} $
. If
$ f\in \mathcal {B} $
of the form
$ f(z)=\sum _{n=0}^{\infty }a_nz^n $
, then
$ \sum _{n=0}^{\infty }|a_nz^n|\leq 1 $
for
$ |z|=r\leq 1/3 $
and
$ 1/3 $
cannot be improved. This inequality is called Bohr inequality and the quantity
$ 1/3 $
is called Bohr radius. If
$ f\in \mathcal {B} $
of the form
$ f(z)=\sum _{n=0}^{\infty }a_nz^n $
, then
$ |\sum _{n=0}^{N}a_nz^n|<1\;\; \mbox {for}\;\; |z|<{1}/{2} $
and the radius
$ 1/2 $
is the best possible for the class
$ \mathcal {B} $
. This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let
$ \mathcal {H} $
be the class of all complex-valued harmonic functions
$ f=h+\bar {g} $
defined on the unit disk
$ \mathbb {D} $
, where
$ h $
and
$ g $
are analytic in
$ \mathbb {D} $
with the normalization
$ h(0)=h^{\prime }(0)-1=0 $
and
$ g(0)=0 $
. Let
$ \mathcal {H}_0=\{f=h+\bar {g}\in \mathcal {H} : g^{\prime }(0)=0\}. $
For
$ \alpha \geq 0 $
and
$ 0\leq \beta <1 $
, let
$$ \begin{align*} \mathcal{W}^{0}_{\mathcal{H}}(\alpha, \beta)=\{f=h+\overline{g}\in\mathcal{H}_{0} : \mathrm{Re}\left(h^{\prime}(z)+\alpha zh^{\prime\prime}(z)-\beta\right)>|g^{\prime}(z)+\alpha zg^{\prime\prime}(z)|,\;\; z\in\mathbb{D}\} \end{align*} $$
be a class of close-to-convex harmonic mappings in
$ \mathbb {D} $
. In this paper, we prove the sharp Bohr–Rogosinski radius for the class
$ \mathcal {W}^{0}_{\mathcal {H}}(\alpha , \beta ) $
.