{"title":"一类近凸调和映射的Bohr-Rogosinski半径","authors":"MOLLA BASIR AHAMED, VASUDEVARAO ALLU","doi":"10.4153/s0008439523000115","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$ \\mathcal {B} $\n be the class of analytic functions \n$ f $\n in the unit disk \n$ \\mathbb {D}=\\{z\\in \\mathbb {C} : |z|<1\\} $\n such that \n$ |f(z)|<1 $\n for all \n$ z\\in \\mathbb {D} $\n . If \n$ f\\in \\mathcal {B} $\n of the form \n$ f(z)=\\sum _{n=0}^{\\infty }a_nz^n $\n , then \n$ \\sum _{n=0}^{\\infty }|a_nz^n|\\leq 1 $\n for \n$ |z|=r\\leq 1/3 $\n and \n$ 1/3 $\n cannot be improved. This inequality is called Bohr inequality and the quantity \n$ 1/3 $\n is called Bohr radius. If \n$ f\\in \\mathcal {B} $\n of the form \n$ f(z)=\\sum _{n=0}^{\\infty }a_nz^n $\n , then \n$ |\\sum _{n=0}^{N}a_nz^n|<1\\;\\; \\mbox {for}\\;\\; |z|<{1}/{2} $\n and the radius \n$ 1/2 $\n is the best possible for the class \n$ \\mathcal {B} $\n . This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let \n$ \\mathcal {H} $\n be the class of all complex-valued harmonic functions \n$ f=h+\\bar {g} $\n defined on the unit disk \n$ \\mathbb {D} $\n , where \n$ h $\n and \n$ g $\n are analytic in \n$ \\mathbb {D} $\n with the normalization \n$ h(0)=h^{\\prime }(0)-1=0 $\n and \n$ g(0)=0 $\n . Let \n$ \\mathcal {H}_0=\\{f=h+\\bar {g}\\in \\mathcal {H} : g^{\\prime }(0)=0\\}. $\n For \n$ \\alpha \\geq 0 $\n and \n$ 0\\leq \\beta <1 $\n , let \n$$ \\begin{align*} \\mathcal{W}^{0}_{\\mathcal{H}}(\\alpha, \\beta)=\\{f=h+\\overline{g}\\in\\mathcal{H}_{0} : \\mathrm{Re}\\left(h^{\\prime}(z)+\\alpha zh^{\\prime\\prime}(z)-\\beta\\right)>|g^{\\prime}(z)+\\alpha zg^{\\prime\\prime}(z)|,\\;\\; z\\in\\mathbb{D}\\} \\end{align*} $$\n be a class of close-to-convex harmonic mappings in \n$ \\mathbb {D} $\n . In this paper, we prove the sharp Bohr–Rogosinski radius for the class \n$ \\mathcal {W}^{0}_{\\mathcal {H}}(\\alpha , \\beta ) $\n .","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":"2 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bohr–Rogosinski radius for a certain class of close-to-convex harmonic mappings\",\"authors\":\"MOLLA BASIR AHAMED, VASUDEVARAO ALLU\",\"doi\":\"10.4153/s0008439523000115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$ \\\\mathcal {B} $\\n be the class of analytic functions \\n$ f $\\n in the unit disk \\n$ \\\\mathbb {D}=\\\\{z\\\\in \\\\mathbb {C} : |z|<1\\\\} $\\n such that \\n$ |f(z)|<1 $\\n for all \\n$ z\\\\in \\\\mathbb {D} $\\n . If \\n$ f\\\\in \\\\mathcal {B} $\\n of the form \\n$ f(z)=\\\\sum _{n=0}^{\\\\infty }a_nz^n $\\n , then \\n$ \\\\sum _{n=0}^{\\\\infty }|a_nz^n|\\\\leq 1 $\\n for \\n$ |z|=r\\\\leq 1/3 $\\n and \\n$ 1/3 $\\n cannot be improved. This inequality is called Bohr inequality and the quantity \\n$ 1/3 $\\n is called Bohr radius. If \\n$ f\\\\in \\\\mathcal {B} $\\n of the form \\n$ f(z)=\\\\sum _{n=0}^{\\\\infty }a_nz^n $\\n , then \\n$ |\\\\sum _{n=0}^{N}a_nz^n|<1\\\\;\\\\; \\\\mbox {for}\\\\;\\\\; |z|<{1}/{2} $\\n and the radius \\n$ 1/2 $\\n is the best possible for the class \\n$ \\\\mathcal {B} $\\n . This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let \\n$ \\\\mathcal {H} $\\n be the class of all complex-valued harmonic functions \\n$ f=h+\\\\bar {g} $\\n defined on the unit disk \\n$ \\\\mathbb {D} $\\n , where \\n$ h $\\n and \\n$ g $\\n are analytic in \\n$ \\\\mathbb {D} $\\n with the normalization \\n$ h(0)=h^{\\\\prime }(0)-1=0 $\\n and \\n$ g(0)=0 $\\n . Let \\n$ \\\\mathcal {H}_0=\\\\{f=h+\\\\bar {g}\\\\in \\\\mathcal {H} : g^{\\\\prime }(0)=0\\\\}. $\\n For \\n$ \\\\alpha \\\\geq 0 $\\n and \\n$ 0\\\\leq \\\\beta <1 $\\n , let \\n$$ \\\\begin{align*} \\\\mathcal{W}^{0}_{\\\\mathcal{H}}(\\\\alpha, \\\\beta)=\\\\{f=h+\\\\overline{g}\\\\in\\\\mathcal{H}_{0} : \\\\mathrm{Re}\\\\left(h^{\\\\prime}(z)+\\\\alpha zh^{\\\\prime\\\\prime}(z)-\\\\beta\\\\right)>|g^{\\\\prime}(z)+\\\\alpha zg^{\\\\prime\\\\prime}(z)|,\\\\;\\\\; z\\\\in\\\\mathbb{D}\\\\} \\\\end{align*} $$\\n be a class of close-to-convex harmonic mappings in \\n$ \\\\mathbb {D} $\\n . In this paper, we prove the sharp Bohr–Rogosinski radius for the class \\n$ \\\\mathcal {W}^{0}_{\\\\mathcal {H}}(\\\\alpha , \\\\beta ) $\\n .\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000115\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000115","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bohr–Rogosinski radius for a certain class of close-to-convex harmonic mappings
Abstract Let
$ \mathcal {B} $
be the class of analytic functions
$ f $
in the unit disk
$ \mathbb {D}=\{z\in \mathbb {C} : |z|<1\} $
such that
$ |f(z)|<1 $
for all
$ z\in \mathbb {D} $
. If
$ f\in \mathcal {B} $
of the form
$ f(z)=\sum _{n=0}^{\infty }a_nz^n $
, then
$ \sum _{n=0}^{\infty }|a_nz^n|\leq 1 $
for
$ |z|=r\leq 1/3 $
and
$ 1/3 $
cannot be improved. This inequality is called Bohr inequality and the quantity
$ 1/3 $
is called Bohr radius. If
$ f\in \mathcal {B} $
of the form
$ f(z)=\sum _{n=0}^{\infty }a_nz^n $
, then
$ |\sum _{n=0}^{N}a_nz^n|<1\;\; \mbox {for}\;\; |z|<{1}/{2} $
and the radius
$ 1/2 $
is the best possible for the class
$ \mathcal {B} $
. This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let
$ \mathcal {H} $
be the class of all complex-valued harmonic functions
$ f=h+\bar {g} $
defined on the unit disk
$ \mathbb {D} $
, where
$ h $
and
$ g $
are analytic in
$ \mathbb {D} $
with the normalization
$ h(0)=h^{\prime }(0)-1=0 $
and
$ g(0)=0 $
. Let
$ \mathcal {H}_0=\{f=h+\bar {g}\in \mathcal {H} : g^{\prime }(0)=0\}. $
For
$ \alpha \geq 0 $
and
$ 0\leq \beta <1 $
, let
$$ \begin{align*} \mathcal{W}^{0}_{\mathcal{H}}(\alpha, \beta)=\{f=h+\overline{g}\in\mathcal{H}_{0} : \mathrm{Re}\left(h^{\prime}(z)+\alpha zh^{\prime\prime}(z)-\beta\right)>|g^{\prime}(z)+\alpha zg^{\prime\prime}(z)|,\;\; z\in\mathbb{D}\} \end{align*} $$
be a class of close-to-convex harmonic mappings in
$ \mathbb {D} $
. In this paper, we prove the sharp Bohr–Rogosinski radius for the class
$ \mathcal {W}^{0}_{\mathcal {H}}(\alpha , \beta ) $
.
期刊介绍:
The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year.
To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics.
Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année.
Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.