一类近凸调和映射的Bohr-Rogosinski半径

MOLLA BASIR AHAMED, VASUDEVARAO ALLU
{"title":"一类近凸调和映射的Bohr-Rogosinski半径","authors":"MOLLA BASIR AHAMED, VASUDEVARAO ALLU","doi":"10.4153/s0008439523000115","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$ \\mathcal {B} $\n be the class of analytic functions \n$ f $\n in the unit disk \n$ \\mathbb {D}=\\{z\\in \\mathbb {C} : |z|<1\\} $\n such that \n$ |f(z)|<1 $\n for all \n$ z\\in \\mathbb {D} $\n . If \n$ f\\in \\mathcal {B} $\n of the form \n$ f(z)=\\sum _{n=0}^{\\infty }a_nz^n $\n , then \n$ \\sum _{n=0}^{\\infty }|a_nz^n|\\leq 1 $\n for \n$ |z|=r\\leq 1/3 $\n and \n$ 1/3 $\n cannot be improved. This inequality is called Bohr inequality and the quantity \n$ 1/3 $\n is called Bohr radius. If \n$ f\\in \\mathcal {B} $\n of the form \n$ f(z)=\\sum _{n=0}^{\\infty }a_nz^n $\n , then \n$ |\\sum _{n=0}^{N}a_nz^n|<1\\;\\; \\mbox {for}\\;\\; |z|<{1}/{2} $\n and the radius \n$ 1/2 $\n is the best possible for the class \n$ \\mathcal {B} $\n . This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let \n$ \\mathcal {H} $\n be the class of all complex-valued harmonic functions \n$ f=h+\\bar {g} $\n defined on the unit disk \n$ \\mathbb {D} $\n , where \n$ h $\n and \n$ g $\n are analytic in \n$ \\mathbb {D} $\n with the normalization \n$ h(0)=h^{\\prime }(0)-1=0 $\n and \n$ g(0)=0 $\n . Let \n$ \\mathcal {H}_0=\\{f=h+\\bar {g}\\in \\mathcal {H} : g^{\\prime }(0)=0\\}. $\n For \n$ \\alpha \\geq 0 $\n and \n$ 0\\leq \\beta <1 $\n , let \n$$ \\begin{align*} \\mathcal{W}^{0}_{\\mathcal{H}}(\\alpha, \\beta)=\\{f=h+\\overline{g}\\in\\mathcal{H}_{0} : \\mathrm{Re}\\left(h^{\\prime}(z)+\\alpha zh^{\\prime\\prime}(z)-\\beta\\right)>|g^{\\prime}(z)+\\alpha zg^{\\prime\\prime}(z)|,\\;\\; z\\in\\mathbb{D}\\} \\end{align*} $$\n be a class of close-to-convex harmonic mappings in \n$ \\mathbb {D} $\n . In this paper, we prove the sharp Bohr–Rogosinski radius for the class \n$ \\mathcal {W}^{0}_{\\mathcal {H}}(\\alpha , \\beta ) $\n .","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":"2 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bohr–Rogosinski radius for a certain class of close-to-convex harmonic mappings\",\"authors\":\"MOLLA BASIR AHAMED, VASUDEVARAO ALLU\",\"doi\":\"10.4153/s0008439523000115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$ \\\\mathcal {B} $\\n be the class of analytic functions \\n$ f $\\n in the unit disk \\n$ \\\\mathbb {D}=\\\\{z\\\\in \\\\mathbb {C} : |z|<1\\\\} $\\n such that \\n$ |f(z)|<1 $\\n for all \\n$ z\\\\in \\\\mathbb {D} $\\n . If \\n$ f\\\\in \\\\mathcal {B} $\\n of the form \\n$ f(z)=\\\\sum _{n=0}^{\\\\infty }a_nz^n $\\n , then \\n$ \\\\sum _{n=0}^{\\\\infty }|a_nz^n|\\\\leq 1 $\\n for \\n$ |z|=r\\\\leq 1/3 $\\n and \\n$ 1/3 $\\n cannot be improved. This inequality is called Bohr inequality and the quantity \\n$ 1/3 $\\n is called Bohr radius. If \\n$ f\\\\in \\\\mathcal {B} $\\n of the form \\n$ f(z)=\\\\sum _{n=0}^{\\\\infty }a_nz^n $\\n , then \\n$ |\\\\sum _{n=0}^{N}a_nz^n|<1\\\\;\\\\; \\\\mbox {for}\\\\;\\\\; |z|<{1}/{2} $\\n and the radius \\n$ 1/2 $\\n is the best possible for the class \\n$ \\\\mathcal {B} $\\n . This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let \\n$ \\\\mathcal {H} $\\n be the class of all complex-valued harmonic functions \\n$ f=h+\\\\bar {g} $\\n defined on the unit disk \\n$ \\\\mathbb {D} $\\n , where \\n$ h $\\n and \\n$ g $\\n are analytic in \\n$ \\\\mathbb {D} $\\n with the normalization \\n$ h(0)=h^{\\\\prime }(0)-1=0 $\\n and \\n$ g(0)=0 $\\n . Let \\n$ \\\\mathcal {H}_0=\\\\{f=h+\\\\bar {g}\\\\in \\\\mathcal {H} : g^{\\\\prime }(0)=0\\\\}. $\\n For \\n$ \\\\alpha \\\\geq 0 $\\n and \\n$ 0\\\\leq \\\\beta <1 $\\n , let \\n$$ \\\\begin{align*} \\\\mathcal{W}^{0}_{\\\\mathcal{H}}(\\\\alpha, \\\\beta)=\\\\{f=h+\\\\overline{g}\\\\in\\\\mathcal{H}_{0} : \\\\mathrm{Re}\\\\left(h^{\\\\prime}(z)+\\\\alpha zh^{\\\\prime\\\\prime}(z)-\\\\beta\\\\right)>|g^{\\\\prime}(z)+\\\\alpha zg^{\\\\prime\\\\prime}(z)|,\\\\;\\\\; z\\\\in\\\\mathbb{D}\\\\} \\\\end{align*} $$\\n be a class of close-to-convex harmonic mappings in \\n$ \\\\mathbb {D} $\\n . In this paper, we prove the sharp Bohr–Rogosinski radius for the class \\n$ \\\\mathcal {W}^{0}_{\\\\mathcal {H}}(\\\\alpha , \\\\beta ) $\\n .\",\"PeriodicalId\":55280,\"journal\":{\"name\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000115\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000115","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

摘要设$ \mathcal {B} $为单位圆盘$ \mathbb {D}=\{z\in \mathbb {C} : |z|<1\} $上的解析函数$ f $的类,使得$ |f(z)|<1 $对所有$ z\in \mathbb {D} $。如果$ f(z)=\sum _{n=0}^{\infty }a_nz^n $的形式为$ f\in \mathcal {B} $,那么$ |z|=r\leq 1/3 $和$ 1/3 $的形式为$ \sum _{n=0}^{\infty }|a_nz^n|\leq 1 $就不能改进。这个不等式叫做玻尔不等式这个量$ 1/3 $叫做玻尔半径。如果$ f\in \mathcal {B} $的形式是$ f(z)=\sum _{n=0}^{\infty }a_nz^n $,那么$ |\sum _{n=0}^{N}a_nz^n|<1\;\; \mbox {for}\;\; |z|<{1}/{2} $和半径$ 1/2 $是类$ \mathcal {B} $的最佳选择。这个不等式叫做玻尔-罗戈辛斯基不等式对应的半径叫做玻尔-罗戈辛斯基半径。设$ \mathcal {H} $为定义在单位盘$ \mathbb {D} $上的所有复值调和函数$ f=h+\bar {g} $的类,其中$ h $和$ g $在$ \mathbb {D} $中解析,归一化为$ h(0)=h^{\prime }(0)-1=0 $和$ g(0)=0 $。设$ \mathcal {H}_0=\{f=h+\bar {g}\in \mathcal {H} : g^{\prime }(0)=0\}. $对于$ \alpha \geq 0 $和$ 0\leq \beta <1 $,设$$ \begin{align*} \mathcal{W}^{0}_{\mathcal{H}}(\alpha, \beta)=\{f=h+\overline{g}\in\mathcal{H}_{0} : \mathrm{Re}\left(h^{\prime}(z)+\alpha zh^{\prime\prime}(z)-\beta\right)>|g^{\prime}(z)+\alpha zg^{\prime\prime}(z)|,\;\; z\in\mathbb{D}\} \end{align*} $$是$ \mathbb {D} $中的一类近凸调和映射。本文证明了该类$ \mathcal {W}^{0}_{\mathcal {H}}(\alpha , \beta ) $的尖锐Bohr-Rogosinski半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bohr–Rogosinski radius for a certain class of close-to-convex harmonic mappings
Abstract Let $ \mathcal {B} $ be the class of analytic functions $ f $ in the unit disk $ \mathbb {D}=\{z\in \mathbb {C} : |z|<1\} $ such that $ |f(z)|<1 $ for all $ z\in \mathbb {D} $ . If $ f\in \mathcal {B} $ of the form $ f(z)=\sum _{n=0}^{\infty }a_nz^n $ , then $ \sum _{n=0}^{\infty }|a_nz^n|\leq 1 $ for $ |z|=r\leq 1/3 $ and $ 1/3 $ cannot be improved. This inequality is called Bohr inequality and the quantity $ 1/3 $ is called Bohr radius. If $ f\in \mathcal {B} $ of the form $ f(z)=\sum _{n=0}^{\infty }a_nz^n $ , then $ |\sum _{n=0}^{N}a_nz^n|<1\;\; \mbox {for}\;\; |z|<{1}/{2} $ and the radius $ 1/2 $ is the best possible for the class $ \mathcal {B} $ . This inequality is called Bohr–Rogosinski inequality and the corresponding radius is called Bohr–Rogosinski radius. Let $ \mathcal {H} $ be the class of all complex-valued harmonic functions $ f=h+\bar {g} $ defined on the unit disk $ \mathbb {D} $ , where $ h $ and $ g $ are analytic in $ \mathbb {D} $ with the normalization $ h(0)=h^{\prime }(0)-1=0 $ and $ g(0)=0 $ . Let $ \mathcal {H}_0=\{f=h+\bar {g}\in \mathcal {H} : g^{\prime }(0)=0\}. $ For $ \alpha \geq 0 $ and $ 0\leq \beta <1 $ , let $$ \begin{align*} \mathcal{W}^{0}_{\mathcal{H}}(\alpha, \beta)=\{f=h+\overline{g}\in\mathcal{H}_{0} : \mathrm{Re}\left(h^{\prime}(z)+\alpha zh^{\prime\prime}(z)-\beta\right)>|g^{\prime}(z)+\alpha zg^{\prime\prime}(z)|,\;\; z\in\mathbb{D}\} \end{align*} $$ be a class of close-to-convex harmonic mappings in $ \mathbb {D} $ . In this paper, we prove the sharp Bohr–Rogosinski radius for the class $ \mathcal {W}^{0}_{\mathcal {H}}(\alpha , \beta ) $ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
68
审稿时长
24 months
期刊介绍: The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year. To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics. Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année. Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.
期刊最新文献
EISENSTEIN CONGRUENCES AMONG EULER SYSTEMS Norms on complex matrices induced by random vectors II: extension of weakly unitarily invariant norms Bregman Distance Regularization for Nonsmooth and Nonconvex Optimization SOME RESULTS ON VARIOUS TYPES OF COMPACTNESS OF WEAK* DUNFORD-PETTIS OPERATORS ON BANACH LATTICES BCM volume 66 issue 4 Cover and Front matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1