通过性能建模和分析确保无人机在关键任务场景中的自主性

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS ACM Transactions on Cyber-Physical Systems Pub Date : 2023-09-16 DOI:10.1145/3624572
Ermeson Andrade, Fumio Machida
{"title":"通过性能建模和分析确保无人机在关键任务场景中的自主性","authors":"Ermeson Andrade, Fumio Machida","doi":"10.1145/3624572","DOIUrl":null,"url":null,"abstract":"Uncrewed Aerial Vehicles (UAVs) have been used in mission-critical scenarios such as Search and Rescue (SAR) missions. In such a mission-critical scenario, flight autonomy is a key performance metric that quantifies how long the UAV can continue the flight with a given battery charge. In a UAV running multiple software applications, flight autonomy can also be impacted by faulty application processes that excessively consume energy. In this paper, we propose FA-Assure (Fight Autonomy assurance) as a framework to assure the autonomy of a UAV considering faulty application processes through performability modeling and analysis. The framework employs hierarchically-configured stochastic Petri nets (SPNs), evaluates the performability-related metrics, and guides the design of mitigation strategies to improve autonomy. We consider a SAR mission as a case study and evaluate the feasibility of the framework through extensive numerical experiments. The numerical results quantitatively show how autonomy is enhanced by offloading and restarting faulty application processes.","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis\",\"authors\":\"Ermeson Andrade, Fumio Machida\",\"doi\":\"10.1145/3624572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncrewed Aerial Vehicles (UAVs) have been used in mission-critical scenarios such as Search and Rescue (SAR) missions. In such a mission-critical scenario, flight autonomy is a key performance metric that quantifies how long the UAV can continue the flight with a given battery charge. In a UAV running multiple software applications, flight autonomy can also be impacted by faulty application processes that excessively consume energy. In this paper, we propose FA-Assure (Fight Autonomy assurance) as a framework to assure the autonomy of a UAV considering faulty application processes through performability modeling and analysis. The framework employs hierarchically-configured stochastic Petri nets (SPNs), evaluates the performability-related metrics, and guides the design of mitigation strategies to improve autonomy. We consider a SAR mission as a case study and evaluate the feasibility of the framework through extensive numerical experiments. The numerical results quantitatively show how autonomy is enhanced by offloading and restarting faulty application processes.\",\"PeriodicalId\":7055,\"journal\":{\"name\":\"ACM Transactions on Cyber-Physical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3624572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3624572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

无人驾驶飞行器(uav)已经用于关键任务场景,如搜索和救援(SAR)任务。在这样的关键任务场景中,飞行自主性是一项关键的性能指标,用于量化无人机在给定电池充电情况下可以继续飞行多长时间。在运行多个软件应用程序的无人机中,过度消耗能量的错误应用程序过程也可能影响飞行自主性。在本文中,我们提出FA-Assure(战斗自主性保证)作为框架,通过性能建模和分析来保证无人机在考虑错误应用过程时的自主性。该框架采用分层配置的随机Petri网(spn),评估与性能相关的指标,并指导缓解策略的设计,以提高自主性。我们以SAR任务为例,通过大量的数值实验来评估该框架的可行性。数值结果定量地显示了卸载和重新启动故障应用程序进程是如何增强自主性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assuring Autonomy of UAVs in Mission-critical Scenarios by Performability Modeling and Analysis
Uncrewed Aerial Vehicles (UAVs) have been used in mission-critical scenarios such as Search and Rescue (SAR) missions. In such a mission-critical scenario, flight autonomy is a key performance metric that quantifies how long the UAV can continue the flight with a given battery charge. In a UAV running multiple software applications, flight autonomy can also be impacted by faulty application processes that excessively consume energy. In this paper, we propose FA-Assure (Fight Autonomy assurance) as a framework to assure the autonomy of a UAV considering faulty application processes through performability modeling and analysis. The framework employs hierarchically-configured stochastic Petri nets (SPNs), evaluates the performability-related metrics, and guides the design of mitigation strategies to improve autonomy. We consider a SAR mission as a case study and evaluate the feasibility of the framework through extensive numerical experiments. The numerical results quantitatively show how autonomy is enhanced by offloading and restarting faulty application processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Cyber-Physical Systems
ACM Transactions on Cyber-Physical Systems COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.70
自引率
4.30%
发文量
40
期刊最新文献
A Comprehensive Threat Modelling Analysis for Distributed Energy Resources Carving out Control Code: Automated Identification of Control Software in Autopilot Systems Cooperative Driving of Connected Autonomous Vehicles using Responsibility Sensitive Safety Rules: A Control Barrier Functions Approach A Human-Centered Power Conservation Framework based on Reverse Auction Theory and Machine Learning On Cyber-Physical Fault Resilience in Data Communication: A Case From A LoRaWAN Network Systems Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1